
BOSTON UNIVERSITY

GRADUATE SCHOOL OF ARTS AND SCIENCES

Dissertation

SIMPLE, SAFE, AND EFFICIENT MEMORY MANAGEMENT

USING LINEAR POINTERS

by

LIKAI LIU

B.A., Boston University, 2004

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2014

MAILTO:LIULK@LIKAI.ORG

c© Copyright by
LIKAI LIU
2014

MAILTO:LIULK@LIKAI.ORG

Approved by

First Reader
Hongwei Xi, Ph.D.
Associate Professor of Computer Science

Second Reader
Richard West, Ph.D.
Associate Professor of Computer Science

Third Reader
Mark Crovella, Ph.D.
Professor of Computer Science

Acknowledgements

I would foremost like to thank my advisor Professor Hongwei Xi for his patience when

my progress is slow, for his discipline when my research direction goes off tangent, for

his encouragement when I run out of steam, and most importantly, for advocating

my work. I would also like to thank my former advisor Professor Assaf Kfoury for his

instruction that laid the foundation for my understanding of programming language

theories. Hongwei and Assaf were both pivotal in teaching me formal logic, including

Linear Logic in particular, which is the basis of this dissertation.

I would like to thank Professor Richard West for nurturing my knowledge in

operating systems which deeply underpins my dissertation. I would like to thank

Professor Martin Herbordt of College of Engineering for introducing me the concepts

of parallel computing and the hardware issues. I would like to thank Professor Mark

Crovella for kindly being a reader as well as generously providing me with computing

resources from his research group for running benchmarks. Likewise, I would like to

thank Professor Stan Sclaroff and Professor Margrit Betke of the Image and Video

Computing Group for generously allowing me to use their computing resources as

well.

I would like to share the accomplishment of this dissertation with my parents

whom without doubt I am deeply indebted to. This accomplishment is made possible

because of my dad’s hard work and my mom’s meticulous upbringing and endless

http://www.cs.bu.edu/~hwxi/
http://www.cs.bu.edu/~kfoury/
http://www.cs.bu.edu/~richwest/
http://people.bu.edu/herbordt/
http://www.cs.bu.edu/~crovella/
http://www.cs.bu.edu/~crovella/
http://www.cs.bu.edu/~sclaroff/
http://www.cs.bu.edu/~betke/

sacrifices in order so that I could enjoy a stable household and a privileged education as

I grew up. I look up to my grandfather Gong-Gong—who is now a historian studying

the history of Taiwan since retirement from law practices—as a gentle, scholarly role

model who inspired my intellectual curiosity. I also fondly enjoy the cuisine of my

loving grandmother A-Ma.

I would like to thank friends and colleagues, former and current, at school and at

work, for the intellectual discussions and just for keeping me company. I would like

to acknowledge Ruggles Baptist Church for being my spiritual home since 2005.

Last but not the least, I thank God who is the creator of heaven and earth, who

is the begining and the end, the God of Abraham, Issac and Jacob. When me and

my parents suffered financial hardship and uncertainty, He provided and continues to

provide us with more than what we could ask for.

“And he said unto me, My grace is sufficient for thee: for my strength is

made perfect in weakness. Most gladly therefore will I rather glory in my

infirmities, that the power of Christ may rest upon me.”—2 Corinthians

12:9, KJV.

v

http://home.rugglesbaptistchurch.org/

SIMPLE, SAFE, AND EFFICIENT MEMORY MANAGEMENT

USING LINEAR POINTERS

(Order No.)

LIKAI LIU

Boston University Graduate School of Arts and Sciences, 2014

Major Professor: Hongwei Xi, Ph.D., Associate Professor of Computer Science

ABSTRACT

Efficient and safe memory management is a hard problem. Garbage collection promises

automatic memory management but comes with the cost of increased memory foot-

print, reduced parallelism in multi-threaded programs, unpredictable pause time, and

intricate tuning parameters balancing the program’s workload and designated mem-

ory usage in order for an application to perform reasonably well. Existing research

mitigates the above problems to some extent, but programmer error could still cause

memory leak by erroneously keeping memory references when they are no longer

needed. We need a methodology for programmers to become resource aware, so that

efficient, scalable, predictable and high performance programs may be written without

the fear of resource leak.

Linear logic has been recognized as the formalism of choice for resource tracking.

It requires explicit introduction and elimination of resources and guarantees that

a resource cannot be implicitly shared or abandoned, hence must be linear. Early

languages based on linear logic focused on Curry-Howard correspondence. They began

by limiting the expressive powers of the language and then reintroduced them by

allowing controlled sharing which is necessary for recursive functions. However, only

vi

MAILTO:LIULK@LIKAI.ORG

by deviating from Curry-Howard correspondence could later development actually

address programming errors in resource usage.

The contribution of this dissertation is a simple, safe, and efficient approach in-

troducing linear resource ownership semantics into C++ (which is still a widely used

language after 30 years since inception) through linear pointer, a smart pointer in-

spired by linear logic. By implementing various linear data structures and a parallel,

multi-threaded memory allocator based on these data structures, this work shows

that linear pointer is practical and efficient in the real world, and that it is possible to

build a memory management stack that is entirely leak free. The dissertation offers

some closing remarks on the difficulties that must be addressed in order to support

formal reasoning about a concurrent linear data algorithm.

vii

Contents

List of Tables xii

List of Figures xiii

List of Abbreviations xiv

1 Introduction 1

1.1 The Memory Allocation Problem . 2

1.2 Memory Related Program Errors . 4

1.3 Ways to Find Memory Errors and Their Limitations 6

1.4 Linear Logic . 10

1.5 Inspirations of Linear Logic . 12

1.6 Linear Object Ownership Semantics 17

1.7 Memory Hierarchy . 18

1.8 Advances in Garbage Collection . 24

1.9 Argument Against Parallel Garbage Collection 27

1.10 Organization of This Dissertation . 30

2 Linear Ownership Semantics 31

2.1 Object as a Smart Pointer . 37

2.2 Linear Pointer . 42

2.3 Linear Base Class . 44

2.4 Linear Pointer and Linear Chromatic Pointer 49

2.5 Erasure . 54

2.6 Idioms for Manipulating Linear Pointers 57

2.7 Idioms for Borrowing . 60

2.8 Conclusion . 62

3 Using Linear Pointer 64

3.1 Singly Linked List . 66

3.2 Singly Linked Segment . 73

3.3 Singly Linked List Sorting . 77

3.4 Augmented Linked List . 81

3.5 Binary Search Tree . 84

3.6 Splay Tree . 88

3.7 Conclusion . 96

4 Design of the Memory Allocator 98

4.1 Zones and Zone Map . 101

4.2 Heaps and Pool Management . 105

4.3 Linearity Issues . 109

4.4 Optimization . 111

4.5 Benchmark and Results . 115

4.5.1 Packed Size Classes . 117

4.5.2 Lower Best-Fit Size Classes 122

4.5.3 Upper Best-Fit Size Classes 127

4.5.4 Upper Best-Fit Plus One . 132

ix

4.6 Conclusion . 135

5 Linearity and Concurrency 137

5.1 A Historical Perspective . 138

5.2 Hardware Intrinsics . 140

5.3 Linear Atomic Value . 145

5.4 Linear Slots . 148

5.5 Double-Ended Queue . 150

5.5.1 Structural Invariants . 152

5.5.2 The Implementation . 154

5.5.3 Discussion . 158

5.5.4 Related Work . 159

5.6 Singly Linked List . 162

5.7 Linear Transactional Pointer . 165

5.8 Towards Theorem Proving . 174

5.9 Conclusion . 182

6 Conclusion 184

A Comparing Memory Management Scalability Using Cilk and JCilk186

A.1 Description of Memory Management Methods 189

A.2 Scalability Metrics . 192

A.3 Results . 193

A.4 Conclusion . 198

B Linear Pointer in C++11 200

Bibliography 206

x

Vita 225

xi

List of Tables

4.3 Allocator versions used in the benchmark. 116

4.4 Error count. 117

4.5 Wall-clock time for packed configuration. 119

4.6 User CPU time for packed configuration. 121

4.7 Maximum resident set size for packed configuration. 123

4.8 Wall-clock time for lower best-fit configuration. 124

4.9 User CPU time for lower best-fit configuration. 125

4.10 Maximum resident set size for lower best-fit configuration. 128

4.11 Wall-clock time for upper best-fit configuration. 129

4.12 User CPU time for upper best-fit configuration. 131

4.13 Maximum resident set sizes, “no exchange.” 133

4.14 Maximum resident set sizes, “exchange.” 134

A.1 Elapsed wall-clock time. 195

A.2 Maximum resident set size. 196

A.3 Number of elapsed wall-clock seconds garbage collecting the young

generation. 197

A.4 CPU utilization (µ+ σ)/τ . 197

List of Figures

2.1 Temporary, lvalue reference, and rvalue reference assignments. 35

2.2 Temporary, lvalue reference, and rvalue reference for function argument

and return value. 36

2.3 Pointer semantic classifications. 39

3.1 Top-down splay. 90

4.1 Utilization for packed configuration. 120

4.2 Utilization for lower best-fit configuration. 126

4.3 Utilization for upper best-fit configuration. 130

A.1 Speed up T1/TP based on elapsed wall-clock time. 195

A.2 Utilization normalized to the number of workers. 198

List of Abbreviations

ABA A-B-A (illustration of value state changes; not an abbreviation).

AMD Advanced Micro Devices (organization).

ANSI American National Standards Institute (organization).

ATS Applied Type System (programming language).

AVL Abelson, Velskii and Landis (tree data structure).

BIBOP Big Bag of Pages (memory allocation).

CPU Central Processing Unit (computer architecture).

DAG Direct Acyclic Graph (graph theory).

DDR Double Data Rate (computer architecture).

DRAM Dynamic Random Access Memory (computer architecture).

ELF Executable and Linkable Format (file format).

FIFO First-In First-Out (queuing).

GB Gigabytes, or 230 = 1, 073, 741, 824 bytes (unit of data).

GC Garbage Collection (memory management).

GCC GNU Compiler Collection (software).

GHz Gigahertz, or 109 = 1, 000, 000, 000 cycles per second (frequency).

GLIBC GNU C Library (software).

GNU GNU is Not Unix (organization).

IBM International Business Machines (organization).

IPI Inter-Process Interrupt (computer architecture).

JVM Java Virtual Machine (software).

KB Kilobytes, or 210 = 1, 024 bytes (unit of data).

LIFO Last-In First-Out (queuing).

LISP List Programming (programming language).

MB Megabytes, or 220 = 1, 048, 576 bytes (unit of data).

MHz Megahertz, or 106 = 1, 000, 000 cycles per second (frequency).

MIT Massachusetts Institute of Technology (organization).

ML Meta-Language (programming language).

NUMA Non-Uniform Memory Architecture (computer architecture).

OS Operating System (computer architecture).

RAM Random Access Memory (computer architecture).

SML/NJ Standard ML of New Jersey (programming language).

STL Standard Template Library (software).

xv

THE Tail Head Exception (concurrent queue data structure).

TLB Translation Look-aside Buffer (computer architecture).

VM Virtual Machines (computer architecture).

xvi

Chapter 1

Introduction

This dissertation describes a method of memory management using linear pointers

which is a sweet spot for simplicity, safety, and efficiency. Linear pointer is a pratical

alternative to formal verification, compile-time linear type checking, and run-time

memory debugging for detecting memory errors. The idea is based on linear ownership

semantics as a programming discipline inspired by Linear Logic, and the idea is

simple to implement. One can argue that memory safety of a program is uncertain if

one cannot ensure the safety of the underlying memory management subsystem. To

prove that the new method provides the claimed safety benefit, a memory allocator

is implemented using linear pointer, and its performance is compared to the state of

the art parallel memory allocators to show that efficiency can be achieved.

Linear pointer makes manual memory management simple and safe. It allows

low-level and high-performance programs be written without being subject to the

achilles’ heel of poor performance of garbage collection when running on today’s

parallel computers.

2

Contribution of this Dissertation This dissertation introduces a new smart

pointer in C++ called linear pointer to ensure the safety of the program by means

of linear resource management. Unlike existing smart pointers, linear pointer enjoys

the erasure property which allows the program to achieve maximum efficiency. The

erasure property allows the program to retain the same behavior with and without

linear checking, and therefore a programmer can leverage the debug build of the pro-

gram to find linearity violations but switch to a release build for production without

the runtime overhead of linearity checking.

1.1 The Memory Allocation Problem

Memory is used by computer programs to store initial input, intermediate values, and

final results of computation. In an abstract sense, memory is a look-up table from

an integer numbered address to a byte which is the unit of data. One way a program

can store an arbitrary amount of data is by grouping bytes occupying consecutive

memory addresses into a word, and words into an object which is a representation of

high-level program state. An object can refer to another object through a pointer. A

pointer is merely a word stored in memory that is interpreted as the memory address

of another object. Based on this one-dimentional memory, objects and pointers form

data structures which allow the representation of higher-dimensional data.

Objects are created and destroyed during the course of a program’s computation.

When an object is destroyed, it is necessary to reuse the space for objects yet to be

created so that the length of computation is not limited by the total size of all objects

ever created; instead, computation could run indefinitely if memory used only by live

objects is in an equilibrium (although in reality memory demand can fluctuate). Much

of the memory management complexity is hidden by a memory allocator behind two

3

simple operations: given a natural number n, the function alloc(n) yields a pointer

to an object of at least n bytes (the object is uninitialized, and it is the program’s

responsibility to initialize it); and given a pointer p, the function free(p) consumes

the object at address p.

The one-dimensional view of memory is nevertheless the bane of the memory

allocation problem, which is to decide object placement. Objects are typically fixed in

placement once created until they are destroyed. This is largely a design decision due

to the intricacy of updating object pointers. Merely moving the object content from

one location to another is not enough, but all pointers to this object everywhere must

be identified and updated to reflect the object’s new memory address. If the object is

shared by multiple threads of execution, then the update must appear atomically to

all threads at once. Under this design decision, fragmentation could result from non-

optimal placement: as objects are allocated and deallocated, gaps between objects

begin to form that are too small for program use, yet the gaps altogether add up

to significant amount of waste. The amount of waste depends on the allocation-

deallocation sequence as well as the placement strategy.

In order for memory allocator to reuse memory, the allocator keeps a record of

which memory addresses are unoccupied, by constructing an indexing data structure

using free memory. In a sense, the memory allocator and the program take turns

owning a block of memory: memory is free when it is owned by the allocator, and the

memory is in use when it is owned by the program. Program’s performance, which is

measured by the amount of memory it uses and the overall running time, is heavily

influenced by the placement strategy and the efficiency of the indexing data structure

of the memory allocator. The emphasis is to index free memory in a way such that

placement decision for a new allocation request can be made the most efficiently.

Both placement strategies and indexing mechanisms have been extensively sur-

4

veyed by Wilson, Johnstone, Neely and Boles in Dynamic Storage Allocation: A

Survey and Critical Review [131].

1.2 Memory Related Program Errors

Memory is a resource governed by the law of conservation. A given memory location

is either owned by the program or the memory allocator, but not both. The program

has the further obligation that each object allocation must have a corresponding

deallocation (and vice versa). Programs that fail to meet this obligation are subject

to the following pitfalls.

• Objects are allocated but never freed (i.e. orphaned), resulting in memory leak.

• Objects may be in possession by different parts of the program. Any one of the

stake holders may free the object, which can result in the object being returned

to the memory allocator several times. If the memory allocator is not prepared

to handle this situation, this may corrupt the free memory index. This problem

is called double free.

• Objects referenced by multiple stake holders may be freed by one holder while

the object is still being accessed by others. The memory allocator assumes that

it has sole ownership of this memory and overwrites the object for indexing free

memory, corrupting its content. This memory may be subsequently allocated for

a different object. The original stake holders are said to have dangling pointer

because the pointer no longer points to a valid object.

A program exhibiting any of these symptoms is hard to debug because the program

often does not abort immediately. Instead, the program continues to make progress

5

in an inconsistent state and computes an incorrect result. This incorrect result some-

times causes another seemingly valid part of the program to abort. As a result, au-

tomatic memory management solutions are developed to mitigate the memory leak,

double free, and dangling pointer issues.

Sometimes the programming paradigm makes it inevitable for a program to suffer

memory leak. For example, in functional programing, computation is carried out

by reducing mathematical expressions into a value. The computation is pure in the

sense that reduction keeps track of no states and induces no side-effects. Functional

programs manipulate data structures by creating a new copy of all modified objects

in the data structure while sharing pointers to unmodified objects. Old objects are

simply discarded because the program has no knowledge about whether the object

might still be referenced by another data structure. To control memory usage, func-

tional languages employ a form of automatic memory management that scans memory

for all reachable objects and reclaims the unreachable ones. This is called garbage

collection. The first garbage collector was invented for the functional programming

language LISP in 1960 [92, 93]. Garbage collection has also been adapted for use by

the “traditional” imperative languages (e.g. C, Pascal) in 1988 [19], and integrated

into the imperative language Java in 1995 [57].

Sometimes the program requires only simple sharing and needs a way to find

out when an object can be safely freed. As an alternative to garbage collection, the

program can use reference counting for automatic memory management [29]. In this

scheme, each object has a counter that is incremented by one when a new reference

to the object is created, and decremented by one when a reference is removed. The

object is freed when its reference count drops to zero.

There is another similar “missing object” error that is of interest: null pointer

dereference. Often, a program would put zero as a special value for a pointer to

6

indicate the absence of an object that is normally expected to be present. This is

called a NULL pointer. Memory at address zero would be reserved and not used to

place any object. The NULL pointer could be passed from one part of the program

to another to indicate an error condition; for example, alloc() would return NULL

when all memory is exhausted. A program that forgets to check for NULL pointer

would attempt to access memory at the zero location or locations of small offsets

from zero (i.e. members of this fictitious object). For this reason, most modern

operating systems configure the hardware to trap the program if the program tries

to access this reserved memory. Note that automatic memory management alleviates

the memory leak, double free, and dangling pointer problems, but a program using

automatic memory management may still attempt null pointer dereferencing. Null

pointer deferencing is relatively easy to diagnose and fix because the program aborts

immediately and leaves a data path that can be traced to the source of the NULL

pointer.

1.3 Ways to Find Memory Errors and Their

Limitations

Besides garbage collection, there are other approaches for finding memory errors in

a program that uses manual memory management. It can be done through compile-

time static analysis, formal verification, and run-time error detection.

Static Analysis By constructing a control-flow graph that models how values are

passed from one variable to the next, static analysis formulates resource tracking as

a graph reachability problem. This control-flow graph must be generated through

a whole program analysis. The graph-based approach makes static analysis neither

7

provably sound nor complete because the control-flow graph could not model loops,

nor could it model runtime data structures which are not compile-time program vari-

ables. As a result, static analysis often has false positives (declaring a leak while

there is not) and false negatives (not detecting a leak when there is). Furthermore, it

is difficult to assess the effectiveness of static analysis algorithms because each pos-

itive within a corpus must be manually verified, and it is unknown how many false

negatives are left in a corpus. Sabre [113] is the state of the art static analysis tool;

the paper contains a survey of other static analysis designs.

Type Theory When given a programming language defined mathematically using

grammar and structural typing rules, and a program written in that language, the

type-theoretic approach verifies correctness of the program by recursively checking

the sub-expressions of the program according to the structural rules of the language.

The language rules would be able to express inductively defined data structures used

by the program just as it would for recursively defined functions in the program. The

structural typing rules of the language makes it possible to prove the soundness of the

type system using mathematical induction [97]. Once proven sound, these systems

will not have false positives, and their false negatives are generally well-understood

just by examining the structural rules. Some of these methods are described in the

following section.

Formal Verification At a lower level than the type theoretic approach, formal

verification expresses properties of the program in a formal logical system and check

the proof that the program satisfies these properties using an automated theorem

prover. In general, although proof search is intractible and may even be undecidable

for some logical systems, once a proof is produced, checking the proof can be done in

8

polynomial time. Proof written by a human is machine-checked by the theorem prover

program in order to eliminate human errors. The correctness of the theorem prover

itself has to be verified separately. This approach is similar to type checking because

of the Curry-Howard correspondence that a type is a theorem, and a program having

that type is a proof of that theorem. Some popular theorem prover such as Isabelle

[94] and Coq [16] are also called proof assistant because they can reconstruct some

parts of the missing proof, which reduces the human burden of writing the proof.

Formal verification has been done for the memory allocator of an embedded op-

erating system called Topsy [91] using Coq, and for the memory allocator of the seL4

microkernel [118] using Isabelle. Other parts of seL4 were also subsequently verified

[77]. Both Topsy and the seL4 allocator essentially represent a heap model where al-

located blocks are non-overlapping, and that allocation and deallocation change only

the state of the block in question but preserve the rest of the heap. They both use

separation logic to model imperative heap mutation in a high order logical framework

similar to how monad works. However, this method of reasoning about the heap has

the following limits:

1. The heap is finite sized and cannot expand dynamically.

2. Blocks within the heap are modeled as an ordered sequence from lower to upper

address.

As a consequence of this encoding, both malloc() and free() operate on blocks struc-

tured like a singly linked list which requires O(n) traversal. In particular, the proof

of free() is essentially a proof of insertion sort because the insertion into the free

list must maintain block address order. Their methodology precludes using a more

efficient indexing mechanism for free blocks such as segregated free list or binary

search tree. The adventurous reader could consult their formal model and proof [119]

9

spanning over 100 pages.

Run-time Error Detection It is possible to detect memory access violation in

run-time by annotating each memory location with a status, whether it is allocated

but uninitialized, allocated and initialized, and freed. Run-time error detection may

use binary instrumentation to add the instructions necessary to update and check the

state transition of this status whenever a memory location is accessed. One may also

modify the compiler to insert instrumentation in compile time.

Run-time error detetion techniques do not actually track object ownership trans-

fers, so the approach is rather limited. Although the memory location status allows

dangling pointer dereference errors to be caught immediately when it happens, leaks

could only be detected by finding unreachable objects at a coarse interval and when

the program terminates. In post-mortem analysis, even though a leaked object can be

associated with a call-site or stack-trace, the contextual information such as function

arguments or local variables on the stack frame that might help debugging the leak

are no longer present, or would be extremely costly to retain. The deferred reporting

makes it hard to debug memory leaks.

Purify [64] is the earliest run-time error detection tool using a conservative mark-

and-sweep garbage collector for tracing object reachability in order to detect memory

leaks. Like some of its predecessors, it also detects array bounds errors using red-

zones around memory blocks, and uninitialized memory access using tagged shadow

memory. The memcheck tool in Valgrind [102] instruments malloc() and free() to

detect allocated but not yet freed memory at program termination. Dr. Memory

[20] is a refinement of the technique used in Purify such that it identifies “possible

leaks” which are memory blocks referenced only by a pointer to the middle of the

block, but eliminates many common cases that cause this to happen such as C++

10

new[], pointer to base class in multiple inheritance, and memory layout of certain

STL classes. Address sanitizer detects run-time memory error using compiler-inserted

instrumentation [101].

1.4 Linear Logic

In 1987, a formalism to reason about programs manipulating resources that obey the

law of conservation was introduced by Jean-Yves Girard, which he calls Linear Logic

[55, 56]. Linear Logic is a logical system that strengthens classical logic in the sense

that propositions in Linear Logic must to be used in a proof exactly once, except

through explicit exponential operators. In classical logic, logical propositions may

be implicitly used more than once (contraction) or none at all (weakening). Girard

observed that application of Linear Logic to programming languages is imminent

because of Curry-Howard correspondence, which relates an intuitionistic logic proof

to a computer program. An example of the correspondence is the modus ponens,

which is related to function application.

Γ ` A→ B Γ ` A
Γ ` B corresponds to Γ ` (λx.M) : A→ B Γ ` N : A

Γ ` (λx.M) N : B

In 1988, Yves Lafont, a student of Girard, proposed Linear Abstract Machine

which runs a simply-typed linear lambda calculus [80]. In this language, merely

accessing an object during computation will consume it. The main idea is to allow in-

place modification (destructive update) of data structure in a functional programming

language without using reference assignment, since assignment is impure and causes

side-effect. The linearity prohibits sharing and orphaning of data structure objects.

In-place modification is achieved by reusing memory immediately after it has been

11

consumed by the access. Certain objects may be deep-copied and disposed using

built-in primitives, which corresponds to exponential operators for contraction and

weakening. Lafont also pointed out that a linear program produces data structure

that is necessarily a tree due to the absence of sharing, and no garbage collection is

needed in this language.

However, Lafont’s language is too restricted; it is trivially strongly normalizing

because there are no recursive constructs. Fixed-point combinators cannot be written

in linear lambda calculus because the combinators are not linear. They use variables

f and x more than once.

Y = λf. (λx.f (x x)) (λx.f (x x))

Z = λf. (λx.f (λy. (x x) y)) (λx.f (λy. (x x) y))

This is a consequence of treating functions in the language as linear objects. Although

certain kind of objects can be copied, functions are not one of them. Making a copy

of a function requires making a copy of everything in its environment.

Philip Wadler followed up in 1990 with a simply-typed language of mixed lin-

ear and non-linear terms and types [124]. The idea is that recursive functions are

permitted in the non-linear language, but not in the linear language. However, re-

strictions apply: non-linear functions cannot have linear variables in the environment.

If a non-linear function is never called, then the linear variable is never consumed,

which leads to resource leak. If a non-linear function is called more than once, then

the linear variable is consumed more than once, which leads to double-free. This

prompted further work concerning how to interpret non-linear functions in a linear

setting [3, 90, 120].

Wadler mentioned array access as an example use of linearity in a functional

12

language. In an imperative language, array updates are inherently done in-place, and

updates to a shared array are visible throughout the program as side-effect. In a

functional language, array updates must be without side-effect, so the entire array

must be copied. An alternative is to represent an array as a sequence of complete

binary-tree data structure, with Θ(lg n) lookup and update time, which is described in

Chris Okasaki’s thesis [95] as random access list. If the array is linear, then it can be

updated with Θ(1) time in-place because no other parts of the program has a reference

to the array, and hence would not see the side-effect. However, strictly-linear array

lookup would consume the entire array, and Wadler proposes some form of controlled

sharing (a let-binding that temporarily treats a linear value in the sub-context as

non-linear) to mitigate this problem.

One line of follow-up research explores the Curry-Howard correspondence for intu-

itionistic linear logic, leveraging the exponentials in linear logic to express controlled

sharing [125, 126, 127, 3]. It has been shown that reference counting can be used

to support memory management needs with explicit sharing and orphaning [25, 26].

Another line of research on the issue of in-place update explores type-inference of the

mixed language (simply-typed [125], Hindley-Milner polymorphism [121]) so that the

compiler can determine at compile time whether a value is linear, and hence can be

destructively updated as an optimization.

1.5 Inspirations of Linear Logic

Sometimes it is useful to escape the framework of Curry-Howard correspondence

which tends to distracts us from practical issues of resource conservation. For ex-

ample, it is common to assume that linear objects may reference both linear and

non-linear objects, and non-linear objects may only reference non-linear objects. This

13

is sound in theory, but in practice this is not how memory management works. It

is okay for garbage collected objects to reference manually allocated objects as long

as the garbage collector calls the object’s finalizer to free the manually allocated ob-

ject. On the other hand, it is not safe for a manually allocated object to reference a

garbage collected object because the garbage collector does not know how to traverse

the references made by manually allocated objects, and the referenced object would

be garbage collected under our noses, leaving a dangling pointer. If we see manu-

ally allocated objects as linear, and garbage collected objects as non-linear, then we

should allow non-linear objects to reference both non-linear and linear objects, but

linear objects may only reference linear objects. This contradicts the theory.

Breaking away from Curry-Howard correspondence also gives us languages that

are merely inspired by linear logic but have interesting properties or applications.

For example, in 1988, Sören Holmström presented a variant of Lafont’s linear lambda

calculus that enforces linearity in the operational semantics instead of in the type

system [70]. Programs in this language is computed by interchanging objects with

collection using composers and decomposers. Objects are linear values. Collection is

a mapping from variable names to objects. Composer creates an object by removing

a subset of the collection, and decomposer adds name-value bindings to the collection

after destroying the object. Although not originally intended by Holmström, this

presentation is perhaps more suitable for an imperative linear language.

In 1992, Henry Baker’s work shows that even a dynamically typed language like

LISP can leverage linearity to simplify its memory management [9], that the language

can be used to implement the quick sort algorithm [11], and the language can translate

efficiently to a stack-based machine [10]. Baker also suggested that linear objects are

suitable for parallel computing because the fact that linear objects can only be owned

by one thread means their accesses do not require synchronization or cache coherence

14

[12].

In 1999, Karl Crary, David Walker, and Greg Morrisett devised a Calculus of

Capabilities [34] for region-based memory management. Region memory management

was conceived to be a middle ground between stack-based allocation and garbage

collection [117]. Regions are arranged last-in first-out like a call stack, except a

region has unbounded size. The original idea is to let the compiler infer object lifetime

automatically and decide which region on the stack will be used to allocate the object.

Although region inference has short-comings [116], region memory management has

been adopted as a manual memory management technique where objects are allocated

from the same region if they are expected to be all freed at once; rather than freeing

objects individually, we just free the region which relinquishes the memory for all

objects in the region. As a manual memory management technique, regions no longer

need to be stack-like. Reference counting on region handles determine if a region can

be safely freed [129].

In Calculus of Capabilities, instead of enforcing linearity of objects, it only en-

forces the linearity of capabilities for accessing a region handle. Handles are not linear,

so they can be passed around. However, capabilities are required for dereferencing

region handles. Capabilities are erased after the program is compiled, leaving only

region handles at runtime. The distinction of linear capability and non-linear han-

dle later gave rise to Alias Types [108] in 2000, which distinguishes linear location

constraints from non-linear pointers at the object level rather than the region. A

location constraint indicates that an object of a particular type can be found at some

abstract memory location (this is similar to a “collection” in Holmström’s language).

A pointer is an integer representing a memory address, but the pointer value is de-

pendent on the location it represents, and this is reflected on the pointer type itself

(pointer type is a form of dependent type). Otherwise pointers can be shared. The

15

following year, Alias Types is extended to be able to define recursive data structures

[128] such as singly linked list and binary trees, and then found its way into Cyclone

[69] in 2004, a “safe” dialect of C, by Morrisett et al.

In 2001, Alias Types inspired Vault [39], a language for writing device driver and

operating systems by Fähndrich et al. at Microsoft. In Vault, linear capabilities are

called tracked keys, which are used for two disjoint purposes: for tracking the aliasing

of non-linear object references, and for tracking the state transition of a linear object

(e.g. a file object can be either opened or closed, but not both at the same time).

When tracking state transition, an object method is annotated with preconditions

and postconditions expressed in terms of tracked keys. Precondition indicates that

a method may only be called when certain tracked keys are present, consumes the

keys, and yields the new keys in the postcondition. Later on, controlled aliasing of

linear objects in a local scope is achieved through Adopt and Focus mechanism [50],

in order to allow non-linear objects to enforce state transitions as well. This is similar

to Wadler’s let-binding which allows temporary non-linear semantics of a linear value.

The notion of object method state transition later made its way into Singularity OS

and the Sing# programming language [49].

A shortcoming of these linear inspired type systems is the difficulty of dealing

with conditional branching. In [69],

“At join points in the control-flow graph, our analysis conservatively

considers a value consumed if there is an incoming path on which it is

consumed. For instance, if p is not consumed and we write:

if (rand()) free(p);

“then the analysis treats p as consumed after the statement. In this

situation, we issue a warning that p might leak, since the type-states do

16

not match.”

While this shortcoming is generally a non-issue if we require that both conditional

branches introduce or consume the same resources, the same workaround cannot be

applied to functions that “may or may not” produce or consume resources. Such cases

arise frequently in practice. Consider an example of the push() method of a limited

capacity stack object:
1 // push(x) ⇒ true, x consumed and pushed.
2 // push(x) ⇒ false, x not consumed; stack full.
3 bool push(Item *x);

This very simple interface description defeats all type systems with linear resource

tracking but without the ability to express pre- and post-conditions and the ability

to associate these predicates to the transferring of ownership. For the interface of

push() to be expressible, the transferring of resource ownership has to be linked to

the return value of push() via a constraint system.

This was not achieved until Dengping Zhu and Hongwei Xi introduced stateful

view into a programming language called Applied Type System (AT S) [135] in 2005.

In AT S, dynamic terms of the language are separated into two realms: proof terms

and program terms. Proof terms are erased after compilation, leaving only program

terms. Proof terms are characterized by props, while program terms are characterized

by types. Stateful views are linear proof terms. Both props and types are static

terms based on Dependent Type, which allows a static term to reflect the values of

the dynamic term it characterizes.

Through dependent type, AT S is able to guarantee the consistency of complex

data structure, e.g. the coloring of linear red-black tree. The type system can relate

pre- and post-condition of a function to stateful view using dependent type, which

makes it possible to precisely express push() above. Another example of the expressive

17

power of dependent type and stateful view is reasoning about pointer arithmetics,

which is accomplished by modeling an array like a singly linked list, except there is

no “tail” pointer. An array of type a of positive integer length n at location l can be

decomposed into an element of type a at location l, followed by an array of type a of

length n − 1 at location l + 1 (at that time, it was assumed that locations are word

aligned, so l + 1 is the word after l in memory). Controlled sharing of stateful view

in a local scope is added later through sharing modality [104].

1.6 Linear Object Ownership Semantics

Recent development of AT S [134] takes a more pragmatic view of the relationship

between linear proof terms and linear proof variables. Linear proof terms can be seen

as compile-time objects stored in compile-time linear proof variables. The linear proof

variable is said to be the owner of the linear proof term stored in it. When assigning

linear proof variables, the ownership is transferred from one variable to another,

but the destination cannot already be an owner of a linear proof term. The source

variable’s ownership is relinquished. Furthermore, proof variables can be passed by

reference to a function, in a similar way C++ can pass arguments by reference (e.g.

compare pass by value int x to pass by reference int& x). This allows a function to

preserve the linear proof term if the function does not consume the term. Linearity

is enforced by ensuring no local linear proof variables retain ownership of any linear

proof term when they go out of scope, and the proof variables passed by reference

will still hold linear proof terms of the specified type. This transferring of ownership

is called linear object ownership semantics.

Even with this pragmatic view, “linear types as are [sic] supported in AT S can be

very demanding of a programmer’s skill and are sometimes too complex for practical

18

uses1.” This is evident after much hard work implementing various data structures

such as Splay Tree [133] that could be used by a memory allocator to index free

objects, a free-list based garbage collector [82, 83, 132], and a memory allocator

implementing binary buddy system [38]. Linear types in AT S is also too limited in

the case of concurrent data structures, which are used by modern memory allocators

such as StreamFlow [100] to achieve non-blocking synchronization. The difficulty

lies in the inability of the type system to reason about volatile invariants. This will

be discussed more later in this dissertation. As a result, it was determined that a

memory allocator would be implemented in C++ first, then rewritten in AT S as

future work.

In order to use linear object ownership semantics in C++, this dissertation pro-

poses linear pointer as a smart pointer class linear_ptr<Tp> similar to auto_ptr<Tp>

given Tp as the type of the object referenced by the pointer (Tp could be the abbre-

viation for either template parameter or typename parameter), but the pointer will

not automatically free memory when orphaned. Instead, linear pointer implements

runtime checking in the overloaded operators that will enforce linearity of objects.

There is an atomic version, linear_atomic_ptr<Tp>, to be used with non-blocking

algorithms. This runtime checking can be turned off in release mode by changing a

compile-time flag. The implementation will be described in detail later.

1.7 Memory Hierarchy

We briefly review the memory hierarchy of computer systems here in order to develop

intuitions for hardware characteristics and how these characteristics affect software

performance. Our account here is based on Peter Denning’s locality principle [42].
1Hongwei’s own opinion, communicated to me in a private correspondence.

19

Computer storage system covers a spectrum of storage technologies, each present-

ing a different cost and performance trade off. At one end of the spectrum, we have

a large amount of cheap but slow memory, and at the other end, we have a small

amount of expensive but fast memory. Computation is limited by memory speed,

and since processors are faster than the fastest memory (this may change as new

memory technologies such as memristor [111] are developed and made commercially

available), it is only practical to carry out computation on the fastest memory avail-

able. To given an idea of the magnitude of storage speeds, the storage layers in a

modern computer (circa 2011) typically consists of a magnetic hard disk, with 10ms

access time; a dynamic random access memory (DRAM) as main memory, with 10ns

access time; and cache memory made of static RAM, with 1ns access time. The

processor itself executes a handful of instructions every 1ns 2.

The question is, at a given cost, how to effectively leverage all storage technologies

in order to maximize the amount of stored information and maximize computation

throughput. Software developers used to manually split a large program into overlays,

which are portions of the program that can be loaded from slow into fast memory at

a given time, but overlay planning is time consuming. A mechanism in use since the

late 1950’s is to let hardware abstract out the storage layers, presenting the software

with a unified memory address space, with a page as a unit of memory (a page is

typically 4096 bytes). The intent was to simulate a larger amount of expensive but

fast memory backed by the cheap but slow storage, swapping content between the

fast memory and the slow storage on demand. However, computer systems often run

multiple programs concurrently, all sharing slices of processor time and memory as

a scarce resource managed by the operating system. Without an understanding how
21ms (millisecond) is 10−3 (0.001) of a second; 1μs (microsecond) is 10−6 of a second; 1ns

(nanosecond) is 10−9 of a second.

20

program’s memory access pattern changes over time, a naive strategy for swapping

can grind the memory stack for all programs to a halt, where the computer spends

more time swapping than carrying out computation.

Denning observed that programs often exhibit a phased behavior, much like over-

lays, even when the program is not explicitly split into overlays: one phase of the

program tends to access a common set of pages, and when it moves on to a different

phase, it tends to access a different set of pages. He hypothesizes that the phased

behavior is a result of the divide and conquer strategy for solving computational

problems, where a large problem is broken down into smaller sub-problems. As the

program moves from one sub-problem to another, the phase progression changes the

demand of system resources. In 1968, he formalized the notion of working set [40],

which is a set of pages accessed by a program over a window of time. Since then, op-

erating systems have been relying on working set theory for providing virtual memory

and dynamically balancing the scheduling of programs against their resource demands

[41]. In practice, each page in memory has an “accessed bit” which indicates if the

page has been accessed by the program. This bit is cleared periodically, and pages

with the accessed bit set are the ones in the working set window since the last reset.

Virtual memory performs better when the program concentrates its access in small

number of pages, which tends to be the case if the program solves problems using the

divide and conquer strategy. The program is said to exhibit good locality of reference

when its memory accesses are concentrated.

A program typically obtains memory from the operating system in page-sized

units, but the program’s dynamic storage allocation needs are driven by data structure

objects it creates during the course of a computation, and the object sizes are much

smaller, often as small as 8–16 bytes. This is where memory allocator comes in. In

this context, memory allocator is an agent that sits between the operating system

21

and the program, requesting memory from the operating system in batches, dividing

memory into small chunks, and use the small chunks to fulfill objet creation needs of

the program. Recall that the memory allocator also decides where in memory a new

object is to be placed. A memory allocator may not be able to significantly improve

a program’s locality of reference by clever placement strategy, but it can always make

locality worse if placement is spread out across many memory pages. It can also

increase the program’s working set if it has to touch a large number of pages in order

to perform its memory management duties.

Proposition 1. A memory allocator should minimize object placement spread when

possible, in order to minimize the program’s working set size.

Proposition 2. A memory allocator should adhere to the program’s memory access

pattern and not access memory outside of the program’s working set.

We briefly discussed cache memory at the beginning of this section, as one of the

storage layers in the memory hierarchy of a modern computer. Cache memory is

used to accelerate main memory due to the speed disparity between main memory

and processor. Main memory access can take 20 instruction cycles or more. The

speed disparity only worsens as processors become faster, as the demand of greater

computing power rises. However, processor speed increase seems to have reached a

limit (mostly due to heat and power consumption concerns), and now it is common to

put multiple processors in a computer system in order to increase computing power

because computations can now be carried out in parallel. This increased parallelism is

facilitated to a program in the form of threads (as in “thread of computation”). Most

multi-processor computer systems let all processors share the same main memory

which they can all access, one at a time, via a shared memory bus; this is called

shared-memory architecture. In the shared-memory architecture, main memory access

22

essentially serializes computation no matter how many processors there are. Main

memory access is a bottleneck that reduces parallelism. The percentage of time a

parallel program spends in non-parallel parts limits the maximum theoretical speed-

up of the program; this is known as Amdahl’s Law [5].

Fortunately, each processor often comes with its own local cache memory, which

can alleviate main memory bottleneck by handling most memory accesses in the

cache. When multiple processor caches happen to store the same memory locations,

caches synchronize with each other through cache-coherence protocols on the memory

bus. Data is transfered between main memory and cache memory in units of a cache

line, which is typically 64 or 128 bytes. This is also the unit of synchronization for

cache-coherence protocol. This is large enough to store several program objects. If

the cache line is shared by multiple processors but the objects in the cache line are

only used as private objects and not intended to be shared, the cache line still needs

to be synchronized through the memory bus; this is called false sharing. This can

degrade parallel computing performance by inducing unnecessary cache-coherence

synchronization.

Proposition 3. A memory allocator should try to allocate thread-local objects in

thread-local memory, in order to prevent false sharing. Furthermore, a memory al-

locator should miminize accessing another thread’s local memory while performing

memory management duties.

Some hardware tries to alleviate memory bus contention by pairing each processor

with its own memory controller and main memory, but nevertheless allow all proces-

sors to access each other’s main memory through an interconnect, which is slower

than a processor accessing its own main memory. This is called non-uniform memory

access (NUMA). To a program, processor-specific memory is still mapped to a shared

23

address space, but the memory access latency will differ depending on the distance

between the processor and the desired memory bank. Ideally, a NUMA-aware pro-

gram would drive a processor to access its own main memory as much as possible.

This is achieved by a cooperation of the program and operating systems as follows:

1. A program’s thread would set its own processor affinity to a specific processor.

Otherwise the operating system takes liberty to schedule the execution of a

thread on any processor that happens to be idle, at the expense of saturating the

interconnect if the thread is migrated further away from its intended processor-

specific memory.

2. A first-touch policy establishes affinity between the processor and the virtual

memory mapping. On both uniform and non-uniform memory access systems,

when a thread requests memory, the operating system normally delays mapping

the physical memory to the virtual address space until the page is first accessed.

The backing memory is only mapped to the virtual address upon this first

access. Under first-touch policy, the backing main memory will be mapped from

the physical memory that belongs to the processor that currently executes the

thread that initiated the access. Alternatively, sometimes the operating system

would simply fulfill backing memory by round-robin over the physical memory

owned by all processors, if the program is not NUMA-aware. At least this load-

balances memory use at the expense of increasing load on the interconnect.

Proposition 4. Although a memory allocator should not change a thread’s processor

affinity, it should place objects on processor-specific memory in case if the program is

designed to run on NUMA architecture.

Further detail about the memory hierarchy can be found in a computer architecture

text book, for example Computer Systems—A Programmer’s Perspective by Bryant

24

and O’Hallaron [21]. Further detail about shared-memory architecture can be found

in a parallel programming text book, for example Parallel Computing Architecture, a

Hardware/Software Approach by Culler and Singh [35].

1.8 Advances in Garbage Collection

Although memory allocator has been widely researched and surveyed in literature,

it is becoming increasingly difficult to justify research in this area due to the shift

of software engineering practice, where more programs and programming languages

are relying on garbage collectors. The first garbage collector was invented for the

programming language LISP in 1960 [92, 93] out of necessity because of the preva-

lence of object sharing in a functional programming language, and the difficulty in

ascertaining object ownership in the presence of sharing. When a program uses au-

tomatic memory management, it still acquires memory through alloc(), but free() is

now optional. When alloc() runs out of memory, the garbage collector attempts a

collection by tracing all objects that are reachable by the program and subsequently

discarding unreachable ones. The concept of garbage collection is based on the obser-

vation that unreachable objects will never be used again by the program, so memory

used for storing these objects may be safely reclaimed to store new objects. Auto-

matic memory management greatly reduces the risk of unintentional memory leak (it

is still possible to leak memory by either referencing objects from a global variable,

or retaining objects on the call-stack of a run-away thread that is perpetually blocked

but never terminates), and the convenience of not needing to scrutinize over object

ownership greatly increases programmer productivity. Furthermore, since a garbage

collector already traverses object pointers, it can move objects during collection to

reduce fragmentation, such as mark-and-compact [112, 28] and semispace copying

25

garbage collector [51, 24].

The first garbage collectors had inherent deficiencies. Tracing all reachable objects

is expensive when the number of reachable objects is high. Copying and compaction

can reduce fragmentation, but they involve moving a large amount of memory con-

tent, which is also expensive. All this is performed inside the alloc() function call

when program runs out of memory, so the program is forced to block until alloc()

returns, during which time the program would become unresponsive. Also, tracing

all reachable objects in memory involves touching memory pages not in the current

working set and goes in contrary to locality principle. For this reason, garbage col-

lection is known to cause virtual memory thrashing problems. Even though garbage

collector has the ability to move objects to improve their locality of reference, the

collection itself is a locality hazard.

As garbage collection methods mature, many of these deficiencies are addressed.

Generational garbage collection [87, 122] addresses the problem that tracing, copying

and compaction are expensive operations, by discriminating objects by their lifetime:

long-lived objects do not need to be traced often, and short-lived objects do not

survive long enough to be traced or copied. All new objects are first allocated from

the young heap, which is garbage collected in a minor collection. A minor collection

anticipates that most young objects become garbage, so only a small number of

reachable objects are traced and copied. The surviving objects may be moved to the

aged heap, which is collected less often in a major collection. Ideally, the frequency of

the major collection should be in proportion to the lifetime of the aged objects in order

to minimize the number of times the long-lived objects are traced. When to move

surviving objects from the young heap to the aged heap is determined by a tenure

policy. For the distinction between minor and major collection to be effective, the

tenure policy must accurately discriminate long-lived objects from short-lived ones.

26

Failure to meet this requirement causes major collection to occur more frequently,

diminishing the performance advantage of generational garbage collector. Modern

implementation [96] uses an “ergonomic” policy that attempts to meet pause time

and throughput goals while minimizing footprint [123].

Concurrent and incremental garbage collection [45, 46, 13] addresses the prob-

lem that program becomes unresponsive during collection, by allowing the mutator

(the program) and the collector to run at the same time (concurrent) or interleaved

(incremental). This requires careful synchronization between the mutator and the col-

lector through memory barrier, so the program runs slower, but the collection cycle

pause is greatly reduced. This allows the use of automatic memory management with

real-time applications, where each task in the program has to be completed before

a predictable deadline. Real-time applications traditionally shun garbage collection

because the unpredictable pause time results in missed deadline.

More recently, to solve the problem that object tracing causes virtual memory

thrashing, the Bookmarking Collector [68] cooperates with the operating system vir-

tual memory facility to maintain a summary of the page about to be swapped out to

the disk, and future collection would proceed using the summary instead of bringing

the page into main memory.

For more detail about garbage collection, Paul Wilson did a survey of uniprocessor

garbage collection techniques prior to 1992 [130], chronicling mark-and-sweep, mark-

and-compact, copying, generational, and incremental garbage collectors. A similar

account can also be found in Andrew Appel’s Modern Compiler Implementation in

ML [7, chapter 13]. Richard Jones dedicated an entire book to garbage collection

in 1999 [75] with a follow up book in 2011 [74] that contains recent development in

parallel, concurrent, and real-time garbage collection.

27

1.9 Argument Against Parallel Garbage

Collection

Advances in garbage collection technology makes it seem that no performance problem

introduced by an early garbage collector is unsolvable by its successor. However, there

are several ways garbage collection could be detrimental to the scalability of a program

running on a multi-processor computer. Since object reachability is a global property,

collector and mutators all share memory and all need to have a consistent view.

Furthermore, when the collector scans or copies reachable objects, the same objects

may be accessed by the mutator in the mean time, which requires synchronization

between collector and mutators. The synchronization causes communication overhead

over the memory bus due to cache coherence protocol. It is particularly pronounced

with concurrent garbage collection, where memory accesses for mutator and collector

interleave in a fine grained manner. If we give up on the concurrent garbage collector,

the alternative method employing the stop-the-world strategy with parallelized object

traversal has the trade-off between fine-grained load balancing at the cost of more

synchronization, or less synchronization with coarsed-grained load balancing. Fine-

grained load balancing allows work to be more equally distributed among workers.

On the other hand, coarsed-grained load balancing may cause unequal distribution

of work, which reduces parallelism.

Although scalability limitations of garbage collected parallel programs are the-

oretically conceivable, quantifying their effects on run-time performance is difficult.

The chief difficulty is that programming languages are often either entirely manually

or entirely automatically memory managed. In 2005, Hertz and Berger compared

performances of uniprocessor garbage collectors and manual memory allocators [67]

by first monitoring allocation and object reclaimation activities of a garbage collector,

28

which are converted to alloc() and free() call traces. These call traces are then fed into

a simulator that drives a manual memory allocator. However, the same methodology

cannot be easily adapted for multi-processor memory management. The simulator

will have a different memory access pattern and scalability characteristics than the

original program. Furthermore, languages have different parallel computation mod-

els and sometimes different memory consistency models that affect how a program

may be parallelized; consequently, some languages are simply more “scalable” than

others by their intrinsics, without considering memory management, so the effect of

automatic versus manual memory management in a parallel setting is hard to isolate.

Nonetheless, there are anecdotal evidences suggesting that, for a parallel program

running on a multi-processor shared-memory computer, garbage collection can be

detrimental to scalability.

• Anderson [6] compared two garbage collectors: JGC which is a generational

“block-based, stop-the-world, mark-sweep-compact GC” where thread-local nurs-

eries are assigned without thread-affinity, and TGC which assigns each thread

a fixed nursery. His result shows that matrix multiplication on both JGC and

non-concurrent TGC scales linearly and enjoys a speed up of P on P proces-

sors, up to P ≤ 23. Matrix multiplication is memory bandwidth heavy, but all

the memory access is confined to pre-allocated arrays of memory, and it does

not place very much burden on the garbage collector. On the other hand, the

experiment result of Barnes-Hut n-body simulation [14] shows that neither JGC

nor TGC are scalable; they only enjoy a maximal speedup of 5 when running

on 5 or more processors. The Barnes-Hut algorithm is known to scale nearly

linearly to the number of processors [35, pp. 432]. The algorithm uses octtree to

represent particles in a 3-dimensional space and is more demanding on memory

29

management. The same paper also compared non-concurrent TGC with two

variants of concurrent TGC and found that, in the case of matrix multiplication,

the concurrent variants do not scale when the number of processors is greater

than 7.

• Siebert’s JamaicaVM features a parallel and concurrent garbage collector [105]

that shows some promise on scalability. A suite of benchmark shows that the

garbage collector is Θ(P) scalable: for 8 processors, linear speedup between

4 and 8 is achieved. However, closer inspection reveals that each benchmark

consists of eight independent instances of the same sequential program, running

on eight threads. Even though the threads share the memory address space,

they do not share data structures. Such embarrassingly parallel benchmark

should be able to achieve ideal speedup, that is, by a factor that is the number

of processors. However, the parallel, concurrent garbage collector still manages

to hinder ideal speedup of many benchmarks but one.

• Gidra et al presented a study of garbage collector scalability on NUMAmachines

[54], comparing OpenJDK’s scavenge collector, concurrent mark-sweep, and

Garbage First collector, all of which are generational and parallel. Their result

shows that none of them are scalable; as number of threads increase, so as the

time spent in garbage collection. They attribute the scalability bottleneck to

the lack of NUMA awareness and the inefficient load-balancing implementation

that causes contention in the variable used to keep track of work-queue size and

still fails to adequately balance the load.

• Appendix A presents a comparison between Cilk and JCilk, two parallel lan-

guage extensions that have the same parallel computation model and imple-

mented using the same work scheduling algorithm. Cilk is based on C and

30

manual memory management. JCilk is based on Java with garbage collection.

The comparison shows that although it is possible to trade off reducing garbage

collection frequency with increasing memory footprint, increase in garbage col-

lection activity significantly reduces scalability.

In the end, there is no denial that automatic memory management is convenient

for rapid prototyping as well as deployment of best-effort applications. But garbage

collection impedes scalability due to the additional communication overhead it causes

on a multi-processor computer, and this limitation affects all but the very trivial kind

of parallel programs.

1.10 Organization of This Dissertation

Chapter 2 describes how to enforce linear ownership semantics in C++ and shows the

erasure property of linear pointers. Chapter 3 shows how to implement data struc-

tures based on linear pointers. Chapter 4 presents the design and implementation of

a parallel scalable allocator and shows that linear pointer can achieve comparable effi-

ciency. Chapter 5 elaborates on using linear pointer with concurrent data structures,

investigates the short-comings of formal system when it is used to reason about con-

current algorithms, and offers some suggestions for future improvements that might

overcome these short-comings. Finaly, Chapter 6 concludes the dissertation.

Chapter 2

Linear Ownership Semantics

C++ is a language that expects program to manually manage dynamically allocated

memory, and memory related errors such as memory leak, double free, and dangling

pointer are commonplace. Linear object ownership semantics is a programming prac-

tice that prevents these memory related errors from happening. It is a policy about

object pointer handling characterized by the invariant that each object has exactly

one pointer to it. The program variable that holds the pointer is the owner. When

object pointer is assigned from one variable to the next, the pointer in the original

variable is erased, and the ownership is passed on to the assignee. Furthermore, any

variable that retains ownership is prohibited from going out of scope. In C++, ob-

jects are explicitly introduced through the constructor and eliminated through the

destructor. Constructor and destructor are defined in a class that describes the type

of the object. It is easy to see that linear object ownership enforces that each object

introduction must have a corresponding elimination, as follows:

• Memory resource is allocated by operator new, which invokes the object con-

structor to initialize the memory and returns the only pointer to the object.

32

• This pointer can be passed from one variable to another with the corresponding

ownership transfer. Since variables that retain ownership cannot go out of scope,

the pointer is never abandoned.

• The pointer is eventually passed to operator delete, which consumes the

only pointer to the object, invokes the object destructor, and deallocates the

underlying memory resource.

Traditionally in a linear programming language, linearity is enforced at compile time

by the type system. Many such languages feature a type system with Curry-Howard

correspondence to intuitionistic linear logic. The type system has built-in formalism

for resource conservation of program terms. C++ does not have a linear type system,

and handling object pointer in C++ is unsafe with regard to linearity, but C++

has evolved a concept called Resource Acquisition Is Initialization [110] that can be

leveraged to ensure linearity.

As mentioned before, operator new introduces objects that are allocated dynam-

ically on the heap, but this is not the only way objects are introduced. All program

variables implicitly introduce objects as well. The compiler determines how to place

the variable-identified objects. If the variable is global or static, the memory used by

the object is reserved in the “bss” uninitialized data segment of the program. The

number of global and static variables are known at link time; they occupy a fixed

amount of memory, and they are unable to scale to the program’s dynamic memory

demands. On the other hand, if the variable is declared as a local variable inside a

function, the memory used by the object is allocated on the call stack, which stores

the activation frames of the function calls. The number of local variables grow as the

depth of the function call-graph grows but in a strictly last-in first-out order.

33

As part of the language’s operational semantics, the C++ compiler ensures that

the constructor is called whenever the program’s control flow enters the scope of the

variable, and that the destructor is called whenever the program’s control flow leaves

the scope of the variable. This is guaranteed even in the face of an exception which

causes the control flow to escape the current scope, potentially unwinding the call-

stack by an arbitrary number of frames until an exception handler is located. This

association of control flow, variable scope, and object construction and deconstruction

is the key idea behind resource acquisition is initialization.

It is worthwhile to note that variable-identified objects, which are automatically

memory-managed by the compiler, are already linear in the sense that each variable

is the sole owner of the underlying object, but this ownership cannot be transferred.

There are three ways to work around this problem in C++: to pass an object by

pointer, pass by lvalue reference, or pass by value. Passing an object by pointer

makes the pointer indistinguishable from dynamically allocated objects, and it is an

error to free objects placed by the compiler in the data segment or on the stack.

Passing an object by reference creates a variable that is an alias to an existing object.

It is effective for passing objects from the caller to the callee, but it is an error for

a callee to pass an object back to the caller by reference because of object lifetime

constraint. By the time the caller receives the reference of the object, which is placed

on the activation frame of the callee, the object itself is already destroyed. Passing

object by value makes a copy of the object, and it is the only well-defined way for

a function to return an object back to the caller. The function would copy out the

object to the caller before leaving its activation frame.

Object copying is made possible in C++ by the const lvalue reference constructor,

also know as the copy constructor, which allows an object to be constructed as a copy

of another object. However, a program could spend a significant amount of time

34

copying objects if ownership transfer happens frequently. Even so, programming

using only stack-allocated object is still too restrictive: across a function call, the

callee could only return one object back to the caller, and the caller must allocate

space for the returned object in advance. This makes it difficult to implement a

function whose output size is greater than the input size. In practice, many objects

hold pointers to dynamically allocated objects which is managed by the memory

allocator, and linear ownership of these pointers are not enforced. In addition, in

order to satisfy the semantics of the copy constructor, simply copying the internal

pointers is not enough; dynamically allocated objects referenced by these pointers

must be deep-copied in the copy consturctor as well. This is a common source for

performance problems of containers such as std::vector<Tp> and std::string,

particularly when a temporary object is created for the sole purpose of initializing

a more permanent object. In some cases such as Return Value Optimization, the

copying could be elided by eliminating the temporary object.

C++11 introduced the rvalue reference constructor for move semantics, which al-

lows a newly constructed object to pilfer internal resources that belong to a temporary

object, and the temporary object will be in an undefined state. The C++11 stan-

dard has complex rules to determine whether an expression can be used as an rvalue

reference (see Figure 2.1 and Figure 2.2). For example, a variable cannot be used as

rvalue reference because the program might accidentally use the pilfered source object

which is in the undefined state, but an rvalue reference returned from a function has

no such problem. However, it is still the responsibility of the source object’s destruc-

tor to recognize this undefined state so that it will not release the internal resources

again, which will result in dangling pointer in the new move-constructed object. If

anything, move semantics is only sound if linear object ownership is preserved. It is

commonly misunderstood that rvalue reference signifies the intent to pilfer resource

35

A a = A();
A& la = A(); // illegal
A&& ra = A();
(a) Assignment from temporary.

A a0 = A();

A a = a0;
A& la = a0;
A&& ra = a0; // illegal
(b) Assignment from variable.

A a0 = A();
A& la0 = a0;

A a = la0;
A& la = la0;
A&& ra = la0; // illegal

(c) Assignment from lvalue reference.

A&& ra0 = A();

A a = ra0;
A& la = ra0;
A&& ra2 = ra0; // illegal

(d) Assignment from rvalue refer-
ence.

Assignment from variable (Figure 2.2b) and assignment from lvalue reference (Figure
2.2c) are considered the same.

Figure 2.1: Temporary, lvalue reference, and rvalue reference assignments.

from the other object, but it does not. It merely allows function return values as well

as temporaries to be destructively updated, which was not previously possible with

lvalue reference.

Pedantically speaking, C++98 [71, §12.1.10] treats constructor for class X accept-

ing the argument const X& as well simply X& as copy constructor, but here we make

a distinction, calling the latter a move constructor instead. In C++11 [72, §12.8.3],

a move constructor is a constructor taking X&& as the argument. Our terminology

here is chosen to reflect the intention; whenever we have a non-const lvalue reference

constructor, the intention is to implement move semantics, so it is called a move

constructor. Rvalue reference is not used here.

36

void Fa(A a);
void Fla(A& la);
void Fra(A&& ra);

A Ca();
A& Cla();
A&& Cra();

A a = A();
A& la = a;
A&& ra = A();

Fa(A());
Fla(A()); // illegal
Fra(A());

(a) Calling with temporary ar-
gument.

Fa(Ca());
Fla(Ca()); // illegal
Fra(Ca());

(b) Calling with temporary re-
turn value.

Fa(la);
Fla(la);
Fra(la); // illegal

(c) Calling with lvalue reference.

Fa(Cla());
Fla(Cla());
Fra(Cla()); // illegal

(d) Calling with lvalue reference
return value.

Fa(ra);
Fla(ra);
Fra(ra); // illegal

(e) Calling with rvalue reference.

Fa(Cra());
Fla(Cra()); // illegal
Fra(Cra());

(f) Calling with rvalue reference
return value.

• Function call with temporary values (Figure 2.3a) and temporary return val-
ues (Figure 2.3b) are consistent with assignment with temporary value (Figure
2.2a).

• Function call with lvalue reference (Figure 2.3c) and lvalue reference return
values (Figure 2.3d) are consistent with assignment with lvalue reference (Figure
2.2b).

• But in the case of rvalue reference, function call (Figure 2.3e) is the same as
assignment (Figure 2.2d), but rvalue reference is treated differently when it is
the return value of a function (Figure 2.3f).

Figure 2.2: Temporary, lvalue reference, and rvalue reference for function argument
and return value.

37

2.1 Object as a Smart Pointer

In C++, an object can be treated as a pointer if it defines operators for dereferencing

(operator*) and for member access (operator->). This is made possible through

operator overloading. Formally, any object whose class defines the pointer interface

in Listing 2.1 is treated like a native pointer in C++. The pointer interface extends

the built-in comparable interface as decribed in Listing 2.2. Note that in the pointer

interface, the listing defines the accessors is_nil() and is_invalid() as well as the

mutators get(), release(), and reset(). These methods are not required by C++

for pointers, but their purpose will be explained later.

A pointer object like this is supposed to be backing a variable and not itself dy-

namically allocated; when that is the case, the object’s constructor and destructor are

essentially notifications of the program’s control flow entering and leaving the scope

of the variable. This is called a smart pointer. Depending on whether the pointer im-

plements copying semantics or move semantics, it can be classified as implementing a

copy_assignable, lvalue_movable, or rvalue_movable interface, as seen in Figure

2.3. The plain old data pointer Tp* can be seen as an example of a copy-assignable

pointer.

The first smart pointer auto_ptr<Tp> was introduced by Gregory Colvin in 1994

[30] and incorporated into the Standard Template Lirary in C++98 [71, §20.4.5]. It

is a singleton container that holds a pointer to an object allocated by operator new.

It could also hold a NULL pointer. Its destructor releases the object using operator

delete if the pointer is not NULL. When assigning resource to a pointer that already

has ownership to another resource, the original resource is automatically released as

well.

Rather than implementing a copy-assignable interface which does not modify the

38

Listing 2.1: Pointer class interface
1 // Pointer interface synopsis. Any class that implements this
2 // interface will appear to C++ as if it’s a native object pointer.
3 //
4 template<typename Tp>
5 class pointer : public builtin_comparable<pointer<Tp> > {
6 public:
7 // Constructor
8 explicit pointer(Tp *) throw(); // Value constructor
9 pointer(pointer& that) throw(); // Move constructor

10

11 // Assignment
12 pointer& operator=(Tp *) throw(); // Value assignment
13 pointer& operator=(pointer& that) throw(); // Move assignment
14

15 // Conversion
16 operator bool() const volatile throw(); // C++98 section 4.12
17 Tp& operator*() const throw();
18 Tp* operator->() const throw();
19

20 // Accessors
21 bool is_nil() const volatile throw();
22 bool is_invalid() const volatile throw();
23

24 // Mutators
25 Tp *get() throw();
26 Tp *release() throw();
27 void reset(Tp *) throw();
28 };

39

Listing 2.2: Comparable class interface
1 template<typename Self>
2 class builtin_comparable {
3 public:
4 bool operator==(const Self&) const throw();
5 bool operator!=(const Self&) const throw();
6 bool operator<(const Self&) const throw();
7 bool operator<=(const Self&) const throw();
8 bool operator>(const Self&) const throw();
9 bool operator>=(const Self&) const throw();

10 };

1 class copy_assignable {
2 public:
3 copy_assignable(const copy_assignable&) throw();
4 copy_assignable& operator=(const copy_assignable&) throw();
5 };

(a) Copy-assignable interface.

1 class lvalue_movable {
2 public:
3 lvalue_movable(lvalue_movable&) throw();
4 lvalue_movable& operator=(lvalue_movable&) throw();
5 };

(b) Lvalue movable interface.

1 class rvalue_movable {
2 public:
3 rvalue_movable(rvalue_movable&&) throw();
4 rvalue_movable& operator=(rvalue_movable&&) throw();
5 };

(c) Rvalue movable interface

Figure 2.3: Pointer semantic classifications.

40

source, auto_ptr<> implements an lvalue movable interface that transfers object own-

ership from the source. An auto_ptr<> can be passed as an argument to a function,

but returning an auto_ptr<> from a function requires a complex workaround in

the implementation because function return values are not lvalues. For this reason,

C++11 superseded auto_ptr<> by unique_ptr<> [72, §20.7.1] which implemented

a rvalue movable interface with vastly simplified implementation. It also allows the

pointer to use a different delete policy than operator delete.

Although smart pointers could be used to address resource leaks, it is well-known

that an auto-deleting smart pointer have correctness problems when used with algo-

rithms that do not know about auto-deletion, and programmers have been advised to

avoid using smart pointers with STL containers. For example, an in-place array-based

quick-sort algorithm could be implemented as follows.

Listing 2.3: An in-place, array-based implementation of the Quick Sort algorithm.
1 template<typename Tp>
2 void swap(Tp& a, Tp& b) {
3 Tp tmp = a;
4 a = b;
5 b = tmp;
6 }
7

8 // Based on the Quick Sort described by [33, pp.146]
9 //

10 // “first” and “last” are indices into the array “xs”, and the
11 // indices are inclusive.
12 template<typename Tp>
13 void quicksort(Tp xs[], size_t first, size_t last) {
14 if (first >= last)
15 return; // Nothing to sort.
16

17 // Partition
18 Tp pivot = xs[last]; // Non-linear!
19 size_t i = first;
20 for (size_t j = first; j < last; j++) {
21 if (xs[j] <= pivot)

41

22 swap(xs[i++], xs[j]);
23 }
24 swap(xs[i], xs[last]);
25

26 // Recursively sort subarrays.
27 if (i > 0) quicksort(xs, first, i - 1);
28 quicksort(xs, i + 1, last);
29 }

The pivot is read out (ownership transferred) to a temporary variable but never

written back to the array. The pivot is subsequently abandoned. If the array is an

array of smart pointers with auto-deletion, then all array items would mysteriously

disappear after sorting is done because each item is used as the pivot at one point.

The problem is corrected if line 18 is changed as follows:
18 Tp& pivot = xs[last]; // Tp& instead of Tp

Then it would work. We are now borrowing an alias of the pivot, but we do not steal

its ownership.

Since the observation of the pitfall when using auto_ptr<> with STL algorithms,

its successors have tried to avoid this pitfall by restricting operator overloading so

that certain uses are no longer allowed.

As a restricted form of auto_ptr<>, Boost introduced scoped_ptr<> [2] which

behaves more like a scope-bound object except the object is heap allocated. A

scoped_ptr<> cannot be copied or assigned, but it does allow a swap() method

to transfer ownership. The restriction prohibits its use in non scoped_ptr<> aware

code which makes it safer, but its auto-deletion still imposes problem in a data struc-

ture. Imagine a binary search tree rotation that forgets to move one of its subtrees.

Rather than flagging this as an error, scoped_ptr<> would truncate the abandoned

subtree.

It’s worthwhile to note that unique_ptr<> does not actually implement the lvalue

42

movable interface. Since C++ does not implicitly promote an lvalue reference to an

rvalue reference when looking up operators, this prohibits unique_ptr<> from being

used like this:
1 typedef std::unique_ptr<int> ptr_type;
2 ptr_type p(new int(1));
3 ptr_type q = p; // not allowed
4 delete q.release();

This prevents unique_ptr<> from being used by the quick-sort algorithm above. How-

ever, a data structure implementation using unique_ptr<> still suffers the truncation

problem.

A smart pointer not susceptible to the auto-deletion pitfall is shared_ptr<> which

is reference counted and implements the copy-assignable interface. The constructor

increases the reference count, and the destructor decreases the count. When the

count reaches zero, the object is deleted. It was introduced by Boost [2] and now

incorporated into C++11 STL [72, §20.7.2.2]. However, it is well-known that reference

counting carries a significant run-time overhead.

2.2 Linear Pointer

In this chapter, we introduce a novel smart pointer discipline called linear pointer

to ensure linearity of resources in a program. It is a run-time based approach that

allows memory leaks to be detected immediately when it happens, so the error can be

debugged in the context where the problem lies. Unlike the smart pointers mentioned

in the previous section, linear pointer has the distinguished property of erasure so that

when ownership tracking is turned off, the program behaves identically to that using

a raw pointer and suffers no performance penalty. Unlike compile-time ownership

tracking, linear pointer is built on top of the semantics of C++, so it does not suffer

43

semantic gap like type systems or annotations where the expressive power of the

static analysis falls short in the expressive power of the language. Linear pointer can

be implemented for C++98 or C++11, which ensures that the technique is portable

among any standard compliant C++ compilers.

Linear pointer allows flexible transfer of ownership through move constructor and

move assignment operator, but linear pointer never automatically deletes the under-

lying resource. Instead, the destructor contains an assertion that it holds no resource

when the control flow leaves the scope of the linear pointer. In a debug build when

assertion is turned on, the program is simply aborted at the moment the resource

is leaked, as well as when the program tries to dereference a pointer that has no

ownership of any resource.

Two special pointer values nil and invalid are reserved. The nil value is treated

as a valid linear resource, except that it can be arbitrarily introduced and eliminated.

For the sake of convenience, a linear pointer is initialized with the nil value if a

resource is not explicitly given to its constructor. On the other hand, the invalid

value represents a dangling pointer and indicates that the ownership has been trans-

ferred away. This is used by the move constructor and the move assignment operator

to fill the other linear pointer after transferring object ownership away from it. The

invalidation only happens when ownership tracking is turned on.

The distinction between nil and invalid is necessary in order to satisfy the

erasure property, namely that if a program behaves correctly with ownership tracking,

it must also behave correctly without.

Rather than relying on the dereference operator to detect dereferencing nil or

invalid pointer, we typically assign nil to be 0lu and invalid to be ~0lu so that

we could leverage the hardware’s memory protection to detect null and dangling

pointer access. The concrete representation of nil and invalid are defined in the

44

Listing 2.4: Value traits for linear resources.
1 template<
2 typename Tp,
3 unsigned long int Nil = 0lu,
4 unsigned long int Invalid = ~0lu << 12>
5 struct value_traits {
6 typedef Tp value_type;
7 static const Tp nil; // a nil value is for the empty resource.
8 static const Tp invalid; // an invalid value is for uninitialized use.
9 };

10

11 template<typename Tp, unsigned long int Nil, unsigned long int Invalid>
12 const Tp value_traits<Tp, Nil, Invalid>::nil = (Tp) Nil;
13

14 template<typename Tp, unsigned long int Nil, unsigned long int Invalid>
15 const Tp value_traits<Tp, Nil, Invalid>::invalid = (Tp) Invalid;

value_traits<> type in Listing 2.4.

2.3 Linear Base Class

Before implementing the linear pointer, we first describe the linear base class which

governs the policies for linear ownership semantics. The constructors and assignments

cause the origin to lose ownership of the resource, by setting its value to invalid.

The destructor asserts its value to be nil or invalid. The C preprocessor macro

NDEBUG (no-debug, to disable debugging) turns the base class into a regular value,

i.e. does not invalidate origin when the ownership is transferred, nor does it assert

value to be nil or invalid upon destruction. This allows linearity checking to be

turned off so that optimized build of the program incurs no performance penalty. In

order for this to work, we must guarantee that the program’s behavior is identical

with or without linearity enforcement. This is where the invalid value comes into

45

play. If we transfer ownership away from the origin by setting origin to nil, which

has a special meaning in a data structure as a terminal node, then the program may

erroneously rely on this behavior. But in NDEBUG, the origin will retain its old value

and will not be changed. The correct behavior for a linear program at this point is

to reinitialize the origin to nil explicitly. The invalid value will cause the incorrect

program to abort with linearity checking. A correct program will continue to behave

correctly in NDEBUG mode.

Linear base class uses with_value<Tp> for value storage, which provides a value()

accessor method that returns an lvalue reference to some storage of type Tp but has

no linear ownership semantics. The parent class value_comparable_impl<Self> im-

plements comparison operators on value(), and serializable<Self> implements

operator<�< for insertion into an std::ostream.

The Self template argument refers to the most derived type of the linear_base

class, such as linear_ptr<> and linear_chroma_ptr<> which will be introduced

below. The Self type allows linear_base to use the most derived type of itself

as an abstract, incomplete type in the class declaration, and as a normal type in

method definition; this is possible due to the deferred type checking of template

methods in C++. The technique is part of a template programming pattern observed

by James Coplien as “curiously recurring” [32], as in many people before him have

independently invented the technique. The technique did not have a name, but it is

now simply known as the “curiously recurring template pattern.” The pattern allows

type-based “static virtual method” dispatched in compile time without using virtual

table.

Listing 2.5: Linear base value.
1 template<class Self, class Traits /* implements value_traits<?> */>
2 class linear_base
3 : protected with_value<typename Traits::value_type>,

46

4 public value_comparable_impl<Self>,
5 public serializable<Self> {

In the following section, SELF_TYPE_DECL(Self) is a macro that provides the

self() method to access the this pointer as the Self type. The serialize method

allows the serializable<Self> parent class to be able to output the linear value to

an std::ostream.
6 private:
7 SELF_TYPE_DECL(Self);
8 friend class value_comparable_impl<Self>;
9 friend class serializable<Self>;

10

11 void serialize(std::ostream& os) const {
12 os << this->value();
13 }
14

15 protected:
16 typedef typename Traits::value_type value_type;

The following section allows a linear value to be returned from a function as a

return value. This is necessary because linear values do not have a copy constructor.

The copy constructor of linear_base would take const linear_base& as the argu-

ment, which means that the constructor could not modify the origin, and hence cannot

transfer ownership. Instead, it has a move constructor that takes linear_base& as

the argument. The problem is that a function return value is a temporary, which is

inherently const and cannot be used as a non-const reference. To workaround this

problem, we allow the compiler to implicitly cast the linear value to a protected ref

type, which is a temporary container that can be arbitrarily copied only by the com-

piler, and we allow a linear value to be reconstructed from the ref type. This same

technique is used by auto_ptr<Tp>. An alternative implementation using rvalue ref-

erence for move constructor, which would take an argument of type linear_base&&,

would make the workaround unnecessary.

47

17 protected:
18 struct ref {
19 explicit ref(value_type value) throw() : value_(value) {}
20 value_type value_;
21 };
22

23 public:
24 // Conversion.
25

26 // Cast operator for implicit reference conversion.
27 //
28 operator ref() throw() {
29 return ref(this->get());
30 }

The following section defines the constructor, destructor, and move assignment,

which describe the resource handling policies of linear ownership semantics. The

constructor initializes the value to invalid by default unless a resource is given

(though this policy will be overridden by linear pointer). The destructor ensures that

the value is either nil or invalid so that no resource is leaked. The assignment

operator delegates linear transfer policy to the get() method below. Note that any

linear classes based on linear_basemust define their own value constructor, reference

constructor (for ref type), move constructor, value assignment, as well as reference

(ref) assignment, due to the way constructor and operator resolution works in C++.
31 protected:
32 // Value constructor, destructor, and move assignment.
33

34 explicit linear_base(const value_type& value = Traits::invalid) throw()
35 : with_value<value_type>(value) {}
36

37 ~linear_base() throw() {
38 assert(self()->is_invalid() || self()->is_nil()); // #if !NDEBUG
39 }
40

41 linear_base& operator=(linear_base& that) throw() {
42 reset(that.get());
43 return *this;

48

44 }

It is worth noting that, due to the lack of a copy constructor, any class that is

derived from linear_base or contains linear_base or its derivatives as a member

will not be copyable. When a copy constructor is not explicitly implemented for a

class, C++ compiler can automatically synthesize copy constructors, but the synthesis

will fail when it tries to find a copy constructor for linear_base. As a corollary, all

classes having a member that is a linear pointer, which derives from linear_base,

are automatically non-copyable.

The following section defines the accessors and mutators. The accessors operator

bool(), is_nil(), and is_invalid(). These accessors do not modify the state of

the linear value in any way. On the other hand, the mutators get(), release(),

and reset() modify the linear value in a manner that ensures resource conservation.

The get() method is used by move constructor, reference conversion, and assignment

operator to initiate resource transfer.
45 public:
46 // Cast operator for boolean interpretation.
47 //
48 operator bool() const volatile throw() {
49 assert(!self()->is_invalid());
50 return !self()->is_nil();
51 }
52

53 // Accessor and mutator.
54

55 bool is_nil() const volatile throw() {
56 return this->value() == Traits::nil;
57 }
58

59 bool is_invalid() const volatile throw() {
60 return this->value() == Traits::invalid;
61 }
62

63 // Gets the value and invalidates ownership. In NDEBUG mode, does

49

64 // not cause the source to reset.
65 //
66 value_type get() throw() {
67 #if NDEBUG
68 return this->value();
69 #else
70 assert(!self()->is_invalid());
71 value_type tmp = this->value();
72 this->value() = Traits::invalid;
73 return tmp;
74 #endif
75 }
76

77 // Releases ownership and reset value to nil. Returns the released
78 // value.
79 //
80 value_type release() throw() {
81 assert(!self()->is_invalid());
82 value_type tmp = this->value();
83 this->value() = Traits::nil;
84 return tmp;
85 }
86

87 // Assigns a new value to this object, which must not currently hold
88 // ownership.
89 //
90 void reset(value_type value = Traits::nil) throw() {
91 assert(self()->is_nil() || self()->is_invalid()); // #if !NDEBUG
92 this->value() = value;
93 }

And this concludes the linear_base class.
94 };

2.4 Linear Pointer and Linear Chromatic Pointer

The implementation of linear_ptr is presented in Listing 2.6, which is a pointer

to an object with exactly one owner, using linear_base to ensure linear ownership,

50

but with facilities for pointer dereferencing. The concrete representation of nil and

invalid pointer values are assumed to be pointing to an unmapped memory region,

which allows the implementation to rely on the hardware to catch pointer dereference

for missing ownership. By default, these are 0lu and ~0lu <�< 12 respectively. These

are chosen because most operating systems do not map the first and last pages of

the address space1. By setting invalid to ~0lu <�< 12 rather than ~0lu, it is easier

to tell when the program attempts to access an offset of the invalid pointer. The

invalid pointer address would look like 0xff...fNNN where NNN is the offset, which

is distinguishable from accessing an offset of the nil pointer which would look like

0x00...0NNN .

It is also possible to catch bad pointer dereferencing in software by inserting the

appropriate checks into operator* and operator->, in which case the assumption

that nil and invalid belong to unmapped memory region is unnecessary. The

reliance on hardware is an implementation decision.

Listing 2.6: Linear pointer.
1 template<typename Tp, class Traits = value_traits<Tp *> >
2 class linear_ptr /* implements pointer<Tp> */
3 : public linear_base<linear_ptr<Tp, Traits>, Traits> {
4 private:
5 typedef linear_base<linear_ptr<Tp, Traits>, Traits> super_type;
6

7 protected:
8 Tp *ptr() const volatile throw() { return this->value(); }
9

10 public:
11 typedef Tp element_type;
12

13 // Value constructor, reference constructor, move constructor, value

1For example, on a 32-bit machine running Mac OS X, the last 80KB except for the last page of the
address space is used as the COMMPAGE which stores user-accessible routines for machine specific
functions. On a 64-bit machine, the COMMPAGE is located near the limit of the 48-bit address
line at 0x00007fffffe00000. These are defined by the constants _COMM_PAGE32_BASE_ADDRESS and
_COMM_PAGE64_BASE_ADDRESS respectively.

51

14 // assignment, reference assignment.
15

16 explicit linear_ptr(Tp *p = Traits::nil) throw()
17 : super_type(p) {}
18

19 linear_ptr(typename super_type::ref r) throw()
20 : super_type(r.value_) {}
21

22 linear_ptr(linear_ptr& that) throw()
23 : super_type(that.get()) {}
24

25 linear_ptr& operator=(Tp *p) throw() {
26 this->reset(p); return *this;
27 }
28

29 linear_ptr& operator=(linear_ptr& that) throw() {
30 super_type::operator=(that); return *this;
31 }
32

33 linear_ptr& operator=(typename super_type::ref r) throw() {
34 this->reset(r.value_); return *this;
35 }
36

37 // Accessor and mutator.
38

39 // Allows pointer dereference.
40 //
41 Tp& operator*() const throw() { return *this->value(); }
42 Tp* operator->() const throw() { return this->value(); }
43 };

It is also possible to implement a linear chromatic pointer, which is similar to a

linear pointer but the least significant n bits are used to store an integer color. This

leverages the fact that many objects are aligned to 2n memory address. For example,

if the object memory addresses are aligned to multiples of 4, then colors can be any

value from 0 through 3. The linear chromatic pointer can be used to implement data

structure such as the red-black tree [60]. Unlike linear_ptr, the type uintptr_t is

used as the underlying value instead of Tp *, and it is required that nil is 0lu so

52

that the nil pointer can be colored properly.

Listing 2.7: Linear chromatic pointer.
1 template<typename Tp, typename Cp, unsigned int bits = 2u>
2 class linear_chroma_ptr /* implements pointer<Tp> */
3 : public linear_base<linear_chroma_ptr<Tp, Cp, bits>,
4 value_traits<uintptr_t> > {
5 protected:
6 typedef value_traits<uintptr_t> traits_type;
7

8 private:
9 typedef linear_base<linear_chroma_ptr<Tp, Cp, bits>, traits_type> super_type;

10

11 friend class serializable<linear_chroma_ptr<Tp, Cp, bits> >;
12

13 void serialize(std::ostream& os) const {
14 os << this->ptr() << ’.’ << this->color();
15 }

The following utility functions convert an uintptr_t to a pointer and color, and

vice versa.
16 protected:
17 static const uintptr_t mask = (1 << bits) - 1;
18

19 static Tp *ptr_of_int(uintptr_t x) throw() {
20 return reinterpret_cast<Tp *>(x & ~mask);
21 }
22

23 // Note that Cp() is the default value of type Cp, e.g. for int it is 0.
24

25 static uintptr_t int_of_ptr(Tp *p, Cp c = Cp()) throw() {
26 uintptr_t x = reinterpret_cast<uintptr_t>(p);
27 assert((x & mask) == 0);
28 assert((c & ~mask) == 0);
29 return x | c;
30 }
31

32 // Protected accessor and mutator.
33

34 Tp *ptr() const volatile throw() { return ptr_of_int(this->value()); }
35 void reset_uint(uintptr_t x) throw() { super_type::reset(x); }

53

These are the constructors and assignment operators.
36 public:
37 typedef Tp element_type;
38 typedef Cp color_type;
39

40 // Value constructor, reference constructor, move constructor, value
41 // assignment, reference assignment.
42

43 explicit linear_chroma_ptr(Tp *p = 0, Cp c = Cp()) throw()
44 : super_type(int_of_ptr(p, c)) {}
45

46 linear_chroma_ptr(typename super_type::ref r) throw()
47 : super_type(r.value_) {}
48

49 linear_chroma_ptr(linear_chroma_ptr& that) throw()
50 : super_type(that.super_type::get()) {}
51

52 linear_chroma_ptr& operator=(Tp *p) throw() {
53 super_type::reset(int_of_ptr(p)); return *this;
54 }
55

56 linear_chroma_ptr& operator=(linear_chroma_ptr& that) throw() {
57 super_type::operator=(that); return *this;
58 }
59

60 linear_chroma_ptr& operator=(typename super_type::ref r) throw() {
61 super_type::reset(r.value_); return *this;
62 }

The accessors and mutators.
63 // Public pointer-based accessor and mutator.
64

65 Cp color() const throw() { return static_cast<Cp>(this->value() & mask); }
66 void set_color(Cp c) throw() { this->value() = int_of_ptr(ptr(), c); }
67

68 // The following parts of a linear_chroma_ptr are semantically
69 // different than that of linear_ptr due to coloring.
70

71 Tp& operator*() const throw() { return *ptr(); }
72 Tp* operator->() const throw() { return ptr(); }
73

74 bool is_nil() const volatile throw() {

54

75 return (this->value() & ~mask) == traits_type::nil;
76 }
77

78 Tp* get() throw() { return ptr_of_int(super_type::get()); }
79 Tp* release() throw() { return ptr_of_int(super_type::release()); }
80

81 void reset(Tp *p = NULL, Cp c = Cp()) throw() {
82 super_type::reset(int_of_ptr(p, c));
83 }

And this concludes the definition of linear chromatic pointer.
84 };

2.5 Erasure

Linear pointer has the property that if a program behaves correctly with resource

ownership tracking, then it will also behave correctly without the tracking. This

property allows linear_ptr<> to be used as a debugging tool that can be disabled

in a release build of a program which incurs no run-time overhead.

Definition 5 (Erasure). An erasure occurs when a program is compiled with the

NDEBUG preprocessor constant.

Example 6 (Assertion Erasure). An example of erasure is the assert() statement

which, in the absence of NDEBUG, evaluates the expression and aborts the program if

the expression evaluates to false. When NDEBUG is set, assert() is a no-op, and the

expression is not evaluated.

Example (Linear Pointer Erasure). When a linear pointer is erased, it becomes a

plain old pointer.

• The value constructor is already the same as that of a plain old pointer.

55

• The destructor does not check for leaks and becomes a no-op.

• operator bool() does not check for invalidated pointer.

• get() simply returns the underlying raw pointer.

• reset() does not check for leaks and simply sets the raw pointer to its argu-

ment, or nil if an argument is not given.

• As the result of get() and reset() erasure, the move constructors become

copy constructors, and the assignment operators become copying assignments,

which are the same for plain old pointers.

Definition 7 (Correct Program). A correct program observes the following linear

pointer finite state machine transition. The accept states indicate the allowed states

when the destructor is called.

56

valid
nilctor

invalid

valid
!nilctor

release()
operator bool()

get()

reset(nil)

release() reset(!nil)

operator bool()
operator*()
operator->()

get()

reset(!nil)

Theorem 8 (Erasure Preserves Correctness). Before erasure, if a program is correct

with respect to linear pointers, then the erased program is also correct.

Proof. First it is easy to verify that the assertion statements enforce the state transi-

tion shown in the definition, and if a program observes the state transition, then the

erasure of the assertions will not affect the state transitions.

The only interesting case is get(), where after erasure, the invalid state is now

implied and not reflected on the raw pointer. Since a correct program can only

transition from invalid to either valid nil or valid non-nil states through reset(),

the implied invalid state is overwritten with an explicit valid state, hence the erasure

preserves correctness.

The proof illustrates why it is necessary to distinguish nil and invalid as two

57

different states. If get() invalidates a linear pointer by setting the value to nil, then

we have the following state transition where erasure no longer preserves correctness.

nil

ctor

!nil

ctor

get()
release()
reset(nil)
operator bool()

reset(!nil)

operator bool()
operator*()
operator->()

release()

get()
(before erasure)

get()
(after erasure)

In the diagram, get() before erasure and get() after erasure put the linear pointer

into two different states, and that causes the program’s behavior to diverge.

2.6 Idioms for Manipulating Linear Pointers

Linear pointer classes are designed to appear just like native pointers at a type sys-

tem level, but they have additional facilities that are missing in native pointers. For

example, given a pointer Tp *p, the is_nil() method is a common idiom that cor-

responds to the expression p == NULL, but one cannot write p.is_nil() for a native

pointer. On the other hand, given a linear pointer linear_ptr<Tp> q, one cannot

write q == NULL either because linear pointer can only be compared with a linear

pointer, not with a native pointer. This gives rise to pointer_traits<>, which hides

the difference between linear and native pointers so that a program can be written

once and work with both kinds of pointers.

The pointer traits for a linear pointer (or any smart pointer implementing the

pointer interface in Listing 2.1) simply forward the operations to the accessor and

58

mutator methods. The reset() trait is polymorphic in order to accommodate linear

atomic pointer which will be described in Chapter 5.

Listing 2.8: Pointer traits for pointer interface.
1 template<typename Ptr /* implements pointer<?> */>
2 class pointer_traits {
3 public:
4 typedef Ptr pointer;
5 typedef typename Ptr::element_type element_type;
6

7 static bool is_nil(const pointer& ptr) throw() { return ptr.is_nil(); }
8 static bool is_invalid(const pointer& ptr) throw() {
9 return ptr.is_invalid();

10 }
11 static element_type *get(pointer& ptr) throw() { return ptr.get(); }
12 static element_type *release(pointer& ptr) throw() { return ptr.release(); }
13

14 static void reset(pointer& ptr) throw() { return ptr.reset(); }
15

16 template<typename Arg>
17 static void reset(pointer& ptr, Arg arg) throw() { return ptr.reset(arg); }
18 };

The pointer traits for native pointer types are defined as follows. The difference

here is that the get() trait does not reset the origin pointer value, but release()

does.

Listing 2.9: Pointer traits for native pointers.
1 template<typename Tp>
2 class pointer_traits<Tp *> {
3 public:
4 typedef Tp *pointer;
5 typedef Tp element_type;
6

7 private:
8 typedef value_traits<pointer> traits_type;
9

10 public:
11 static bool is_nil(const pointer& ptr) throw() {
12 return ptr == traits_type::nil;
13 }

59

14

15 static bool is_invalid(const pointer& ptr) throw() {
16 return ptr == traits_type::invalid;
17 }
18

19 static pointer get(const pointer& ptr) throw() { return ptr; }
20 static pointer release(pointer& ptr) throw() {
21 pointer tmp = ptr;
22 reset(ptr);
23 return tmp;
24 }
25

26 static void reset(pointer& ptr, pointer arg = traits_type::nil) throw() {
27 ptr = arg;
28 }
29 };

An example use of the pointer traits is another idiom for explicitly transferring

ownership and set the origin to nil. Recall that assignment makes the origin invalid

instead of nil; this is the case so that linearity enforcement can distinguish lack of

ownership from the nil resource, which is a data structure sentinel. However, it is

common for data structure algorithm to move ownership and immediately set the

origin to nil. This is captured in the transfer_linear() idiom as follows.

Listing 2.10: Transfer linear ownership idiom.
1 template<class Ptr /* implements pointer<?> */>
2 Ptr transfer_linear(Ptr& p) throw() {
3 // Do not use p.release(), as the color would be lost in the case of
4 // chromatic pointers.
5 Ptr q(p);
6 pointer_traits<Ptr>::reset(p);
7 return q;
8 }

In most cases, resource managed by a linear pointer p can be disposed by delete

p.release(), but it is also desirable to simply destruct the resource in-place and

obtain the raw, uninitialized memory for other use. This is exceptionally common

60

when writing a memory allocator. This is captured in the destroy_linear() idiom

as follows.

Listing 2.11: Destroy linear resource idiom.
1 template<class Ptr /* implements pointer<?> */>
2 void *destroy_linear(Ptr lptr) throw() {
3 typedef pointer_traits<Ptr> traits_type;
4 typedef typename traits_type::element_type element_type;
5 element_type *p = traits_type::get(lptr);
6 p->~element_type();
7 return static_cast<void *>(p);
8 }

2.7 Idioms for Borrowing

We often want to pass a linear object without relinquishing ownership. This entails

controlled sharing by creating aliased references to that object. In the general case,

the only way to ensure safety in the presence of aliasing is by reference counting.

In some specific cases, when a caller passes an alias to a function, the function’s

(unenforced) convention makes it clear that the alias will not be duplicated, and the

alias is only used during the scope of the function call. When this is the case, we

could do away without reference counting, but use some resource borrowing idioms

to help avoiding programming mistake.

The most common way to pass an object without reliquishing ownership is by

passing its lvalue reference. This is useful because one can only delete a pointer, not

an lvalue reference.
1 void F(A& arg);
2

3 linear_ptr<A> p(new A());
4 F(*p); // pass A by reference.
5 delete p.release();

61

Sometimes it is more convenient to pass a const lvalue reference to the linear

pointer, especially for data structure traversal. When passing a const reference to the

linear pointer, the compiler enforces that the pointer cannot lose ownership to the

resource because it cannot be changed.
1 typedef linear_ptr<binary_tree_node> ptr_type;
2 size_t height(const ptr_type& root);
3

4 ptr_type p(new binary_tree_node());
5 assert(height(p) == 1u);
6 delete p.release();

However, lvalue reference has limitations. Once a variable is declared as a lvalue

reference to some object, the reference cannot be bound to another object. This

makes lvalue reference unsuitable for data structure that might want to maintain a

“parent pointer” in the node. The parent pointer facilitates in-place removal and

sometimes traversal, but the parent pointer cannot be linear, since the grandparent

node already has the only linear pointer that points to the parent. In such cases,

we may need to sort to using a native pointer to the resource, but there is a way to

protect the resource so that it can never be deleted. Listing 2.12 presents a loan<>

container of an object. Using the mixin pattern [107], loan<Super> is a subclass

of the protected object type Super that disallows construction and destruction by

declaring them private, so that loan<Super> * is a pointer that cannot be deleted.

Listing 2.12: Loan of an object.
1 template<class Super>
2 class loan : public Super {
3 private:
4 // Disallow constructor and destructor.
5 loan() throw();
6 ~loan() throw();
7 };

The make_loan() idiom is introduced here for obtaining loan pointer. If we’re

62

given a native pointer, it suffices to do a static_cast because loan<Super> is a

subclass of Super. Here the code is shown with const volatile qualifier. Each

combination of the qualifier must be written for make_loan() if we wish to operate

on qualified objects, but they are omitted here for brevity.
1 template<class Super>
2 const volatile loan<Super> *
3 make_loan(const volatile Super *objp) {
4 return static_cast<const volatile loan<Super> *>(objp);
5 }

Obtaining a loan pointer from linear_ptr<Tp> requires a little trickery. The

&*objp expression dereferences objp and immediately computes the address of the

object. This works because linear_ptr<Tp>::operator* returns Tp& which can be

restored to a native pointer Tp * using operator&.
1 template<class Super, class Traits>
2 const volatile loan<Super> *
3 make_loan(const linear_ptr<const volatile Super, Traits>& objp) {
4 return static_cast<const volatile loan<Super> *>(&*objp);
5 }

Linear chromatic pointer can be treated similarly, so it is omitted here for brevity.

2.8 Conclusion

This chapter described how resource acquisition is initialization can be used to imple-

ment a smart pointer in C++ in order to be notified whenever the program’s control

flow enters and leaves the scope of a variable. A linear pointer is presented where

the constructor and assignment transfer ownership away from another linear pointer,

and the destructor ensures that the pointer has no resource ownership. Together, this

enforces linear ownership semantics for resources managed by the linear pointer at

runtime.

63

Linear pointer uses value traits for the concrete representation of the special val-

ues for nil, which represents the empty resource that can be arbitrarily introduced

and eliminated, and invalid, which represents an uninitialized state of the resource

after the ownership is transferred away. The distinction of nil and invalid allows

us to preserve program behavior when linearity enforcement is in effect. Linearity

enforcement can be turned off using a compile-time flag so that a program can be

compiled without the linearity-checking overhead and still retain the correct behavior.

Pointer traits are defined so that linear pointer and native pointers can be op-

erated alike. This is used to build two more idioms, the transfer_linear() idiom

which explicitly reinitializes the origin to nil rather than leaving it invalid, and the

destroy_linear() idiom which deconstructs a linear resource and returns the under-

lying raw memory. Several borrowing idioms are discussed to pass a linear resource

around a program without reliquishing ownership.

We are now ready to use linear pointer to build data structures such as singly

linked list, binary search trees, and hash tables, in a way that linear conservation of

resources is guaranteed.

Chapter 3

Using Linear Pointer

Programs organize information in memory as objects and pointers, forming data

structures which allow higher dimensional information to be stored and retrieved.

Memory allocators also use data structures to organize the storage and retrieval of

free memory blocks. Manipulation of data structures is error prone, and programming

error often leads to data structure corruption that does not manifest immediately.

The program may crash or enter an infinite loop at a later time when traversing

the data sturcture, often at an innocuous site that bears little relation to the site

where the error is made. This is why memory errors are notoriously hard to debug.

By observing that common data structures such as linked list and binary tree never

required sharing, linear ownership semantics can be used to eliminate memory errors

concerning leak, double free, and dangling pointers. Linear pointer is an effective

debugging aid to avoid these memory errors. Even though linearity checking is done

in runtime, the program would abort immediately when linearity violation occurs at

the error site. This makes it easy to identify and fix programming errors.

This chapter shows how to use linear pointer to implement data structures, so that

the implementation’s correctness—namely adherence to linear ownership of objects—

65

may be verified through the use of linear pointers. Although as shown in prior AT S

work, it is well known that linear implementation of data structures is possible [135,

133], linear pointer presents the programmer with a different set of challenges. Unlike

AT S which allows linear ownership and the pointer to be two separate entities,

linear pointer uses the pointer itself to represet ownership. In order to traverse data

structures without constantly exchanging ownership of nodes between the visitor and

the data structure, the notion of cursor is developed. A cursor is an lvalue reference

or a pointer to a linear pointer that allows moving from pointer to pointer without

modifying it. A similar owner cursor technique facilitates in-place editing of data

structure through ownership stealing, used with what we call an augmented linked

list. The chapter will show that ownership stealing is simpler to implement correctly

than doubly linked data structures because there are fewer corner cases to consider.

The code presented in this chapter is both pointer and allocator agnostic. Neither

properties are required for programs using linear pointers, but they are a requirement

for being able to use the implementation for memory allocators.

Pointer agnosticism The implementation does not use linear pointer direclty. In-

stead, the code is structured as a template parameterized by an arbitrary pointer

type, and the template can be instantiated with linear pointers as well as native

pointers. The fact that this works is a result of the erasure property of linear point-

ers, which shows that linearity is really a refinement—a program that observes linear

ownership semantics will also behave correctly with non-linear (e.g. reference counted

or garbage collected) pointers. Once the code is verified to be linear, it will retain

this property without runtime linearity checking.

66

Allocator agnosticism When implementing data structure code, it is common to

expose only a high level interface such as adding and removal of data item, and hide

the internal detail of pointers. This requires the implementation to be able to allocate

memory for data structure nodes. Instead, an allocator agnostic implementation

would require the data item itself to implement a well-defined interface with pointer

accessors. Linear ownership transfer is adequate for adding and removing items. If

items need to be ordered such as in the case of binary search tree, the data item

would expose the interface for ordering as well. If items need to be keyed such as

being used with a hash table, then the data item would expose its key. Both singly

linked list nodes and binary tree nodes are arbitrary user-supplied classes exposing

these well-defined interfaces to access their members.

Verifying that code is linear involves writing some unit tests that instantiate the

template with linear pointers and running the tests to check for any linear ownership

semantics violation. Throughout the chapter, examples are given to show how using

linear pointer helps the programmer debug memory errors.

3.1 Singly Linked List

A singly linked list is a data structure that consist of nodes with one pointer pointing

to the next node in the list. The relationship from a node to its successor establishes

the ordering of items in the list, but the items are not required to be in any particular

order. The list is terminated at the nil pointer, which also represents an empty list.

Singly linked list is the simplest data structure to implement, but it is not the most

efficient for searching because the item to look for might be at any position in the

list, which may require searching through the whole list in Θ(n) time where n is the

number of items.

67

Memory allocators use singly linked list as the “free list” of objects of the same size,

so it doesn’t matter which object in the list should be used for allocation. Free objects

are stored and retrieved in a last-in first-out manner which are Θ(1) operations.

Memory allocator would have multiple free lists, at least one per object size, but

there could be more. This implements an allocation strategy called segregate-fits.

A singly linked node is a class that implements an interface with the accessor

next() for the pointer to the next node. The pointer type as the template argument

of the node interface is unconstrained for now.

Listing 3.1: Singly linked node interface.
1 template<class Ptr>
2 class singly_linked_node {
3 public:
4 typedef Ptr ptr_type;
5 const ptr_type& next() const throw();
6 ptr_type& next() throw();
7 };

Here is an example implementation of the singly linked node interface that also

carries a key and a value. The pointer discipline is hard coded in this node to use

linear pointer. The node also implements a compare_to() function that will be used

for sorting by the key.

Listing 3.2: A singly linked node implementation.
1 template<typename Key, typename Value>
2 class Node /* implements
3 singly_linked_node<linear_ptr<Node<Key, Value> > >,
4 comparable_with<linear_ptr<Node<Key, Value> > */ {
5 public:
6 typedef linear_ptr<Node<Key, Value> > ptr_type;
7

8 Node(const Key& key_ = Key(), const Value& value_ = Value())
9 : key(key_), value(value_) {}

10

11 const Key key;
12 Value value;

68

13

14 const ptr_type& next() const throw() { return next_; }
15 ptr_type& next() throw() { return next_; }
16

17 ord_t compare_to(const ptr_type& that) const throw() {
18 if (this->key < that->key)
19 return LESS;
20 if (this->key > that->key)
21 return GREATER;
22 return EQUAL;
23 }
24

25 private:
26 ptr_type next_;
27 };

The implementation of the singly linked list is a template class with only static

methods, parameterized by the pointer type to the node. The node type is implied

by the pointer type. The template argument has a recursive constraint that requires

the destination of the pointer to implement the singly linked node interface using the

same pointer type.

Listing 3.3: Singly linked list template outline.
template<
class Ptr /* implements pointer<? implements

singly_linked_node<Ptr> > */>
class singly_linked_list {
public:
typedef Ptr ptr_type;
...

};

Within the body of the template, let us first introduce the node insertion function.

In the code below, node is a pointer to a single node to be inserted at curr which

is the current cursor. The cursor is a reference to a linear pointer that the function

modifies in-place. It can be the pointer to the first node, the next pointer of the last

node, or anywhere in between. The node pointer will be stored at curr, and the

69

previous value of curr is stored at the node’s next pointer. This code is no different

whether linear pointer is used or not.
1 static ptr_type&
2 insert_at(ptr_type node, ptr_type& curr) throw() {
3 assert(node);
4 node->next() = curr;
5 curr = node;
6 return curr;
7 }

One potential error that the caller of this function could make is to supply a node

pointer that points to a multiple-item list (i.e. node->next() is not nil) rather than

a singleton node (i.e. node->next() is nil). The function is correct with respect

to its intended purpose, but the caller might have misunderstood the purpose and

thought that the function could insert a list segment in the middle of a list. After the

insertion, the rest of the inserted list is truncated by the assignment on line 4 above.

Such memory leak would be hard to find without linearity checking. This error is

not a case where naive compiler annotation or static analysis can effectively detect.

It also would not cause any corruption in the data structure, so the program would

carry on until it runs out of memory. Later on, we will write a unit test to show that

linearity checking correctly catches memory leak in this case.

Opposite to node insertion is node removal. In the code below, the node at the

current cursor curr is removed and returned. The cursor is modified to point to

the next node. The implementation is naive. It doesn’t check that curr is a nil

pointer which would cause NULL pointer dereference when reading curr->next(),

but asserting that curr is not nil is rarely necessary because the hardware will abort

the program with segmentation fault for us on access.
1 static ptr_type
2 remove_at(ptr_type& curr) throw() {
3 ptr_type node(curr);

70

4 curr = transfer_linear(node->next());
5 return node;
6 }

Here we have the basic operations to manipulate a singly linked list, so let us test

our implementation. In our test, we will use the node implementation in Listing 3.2

with both Key and Value instantiated to the int type.
1 typedef Node<int, int> NodeT;
2 typedef linear_ptr<NodeT> PtrT;
3 typedef singly_linked_list<PtrT> ListT;

To make testing easier, let us write two more functions, one that constructs a list

from an array of integers ks of length len, and one that destructs a list node by node,

counts the number of nodes in the list, and checks that the keys of the nodes are in

order. The latter function is useful for checking the correctness of singly linked list

sorting algorithms, to be discussed later.
1 static PtrT NewList(const int *ks, size_t len) {
2 PtrT first;
3 for (size_t i = len; i > 0; --i) {
4 int k = ks[i - 1];
5 ListT::insert_at(PtrT(new NodeT(k, k)), first);
6 }
7 return first;
8 }
9

10 static void DeleteSortedList(PtrT first, size_t total) {
11 ASSERT_TRUE(first);
12 int prev_key = first->key;
13 size_t count = 0;
14

15 do {
16 EXPECT_LE(prev_key, first->key);
17 prev_key = first->key;
18

19 PtrT p = ListT::remove_at(first);
20 delete p.get();
21 ++count;
22 } while (first);

71

23

24 EXPECT_EQ(total, count);
25 }

Let xs be a literal integer array that we can feed into the list construction function.
static const int xs[] = { 1, 2, 3 };

And let countof() be a C Preprocessor macro that makes it easier to infer the

length of a literal array, defined as follows.
#define countof(array) (sizeof(array) / sizeof(array[0]))

Then we can write the first test for insert and remove as follows.
1 TEST(SinglyLinkedList, InsertRemove) {
2 PtrT nodes = NewList(xs, countof(xs));
3 DeleteSortedList(nodes, countof(xs));
4 }

Once we build the test and run it, we get an output like this, which shows that

the test runs correctly.
[==========] Running 1 test from 1 test case.
[----------] Global test environment set-up.
[----------] 1 test from SinglyLinkedList
[RUN] SinglyLinkedList.InsertRemove
[OK] SinglyLinkedList.InsertRemove (0 ms)
[----------] 1 test from SinglyLinkedList (0 ms total)

[----------] Global test environment tear-down
[==========] 1 test from 1 test case ran. (0 ms total)
[PASSED] 1 test.

The following test shows that attempting to call remove_at() with a nil pointer

will result in segmentation fault. It is called a death test where the test passes if the

statement causes the program to die in a specific way. In this case, we expect the

program to be killed by SIGSEGV.
1 TEST(SinglyLinkedList, RemoveNil) {
2 PtrT node;
3 ASSERT_EXIT(

72

4 ListT::remove_at(node),
5 ::testing::KilledBySignal(SIGSEGV), "");
6 }

Revisiting the potential memory leak issue in Listing 3.1 where inserting a node

whose node->next() is not nil causes the rest of the list to be truncated, we write the

following death test that verifies that the statement would be aborted with SIGABRT

with the error message mentioning “is_invalid()” from the linear pointer assertion

check. Note that this time, we check the death condition only for the debug build

when linearity checking is enabled (i.e. NDEBUG is not defined). Otherwise, the test

would fail in the release build because linearity checking is disabled.
1 TEST(SinglyLinkedList, InsertNotLone) {
2 PtrT nodes = NewList(xs, countof(xs));
3 PtrT first;
4 #if !NDEBUG
5 ASSERT_EXIT(
6 ListT::insert_at(nodes, first),
7 ::testing::KilledBySignal(SIGABRT), "is_invalid()");
8 #endif
9 DeleteSortedList(nodes, countof(xs));

10 }

Finally, we run the test again to ensure that all the tests pass.
[==========] Running 3 tests from 1 test case.
[----------] Global test environment set-up.
[----------] 3 tests from SinglyLinkedList
[RUN] SinglyLinkedList.InsertRemove
[OK] SinglyLinkedList.InsertRemove (0 ms)
[RUN] SinglyLinkedList.RemoveNil
[OK] SinglyLinkedList.RemoveNil (315 ms)
[RUN] SinglyLinkedList.InsertNotLone
[OK] SinglyLinkedList.InsertNotLone (188 ms)
[----------] 3 tests from SinglyLinkedList (503 ms total)

[----------] Global test environment tear-down
[==========] 3 tests from 1 test case ran. (503 ms total)
[PASSED] 3 tests.

73

The RemoveNil death test ensures that the test could reliably assert the death

condition, and the InsertNotLone death test demonstrates that linearity checking

causes the program to abort immediately upon memory leak, making the problem

trivial to find. The death tests take longer to run because the test is doing a fork()

before running the death statement and waiting for the child process to run the

statement and exit.

3.2 Singly Linked Segment

A singly linked segment is a singly linked pointer and a tail cursor. The tail cursor

allows another node or segment to be quickly appended to the segment in Θ(1) time.

This is useful for efficient concatenation. When appending a list, the tail cursor must

be fast-forwarded to the end of the list, but repeatedly appending lists only requires

an overall Θ(n) running time. When appending to tail and popping from head, the

segment can be used like a queue without doubly linking the list.

This is embodied into the singly_linked_segment template class below. The

class has two members: a singly linked list that constitutes the segment, and the

tail cursor. The segment retains ownership of the list. A singly linked segment is

not copyable if it is instantiated with a linear pointer because linear pointers are not

copyable. Below is the template outline.

Listing 3.4: Singly linked segment template outline.
template<
class Ptr /* implements pointer<

? implements singly_linked_node<Ptr> > */>
class singly_linked_segment /* implements consume<Ptr> */ {
public:
typedef Ptr ptr_type;

singly_linked_segment() throw()

74

: head_(), tail_(&head_) {}
...

private:
ptr_type head_;
ptr_type *tail_;

};

For now, the default constructor will initialize the segment with an empty list,

where the tail cursor initially points to the head which is the nil pointer. The

segment maintains an invariant that the tail cursor always points to the nil pointer

at the end of the list.

Let us first provide a method to populate the segment one node at a time. It puts

the node at the tail, then advances the tail to the node’s next pointer.
1 void append_node(ptr_type node) throw() {
2 *tail_ = node;
3 tail_ = &(*tail_)->next();
4 }

The implementation has to observe a slight nuance in order to be linear. If

ptr_type is a linear pointer, then after the assignment in line 2 above, node transfers

ownership to *tail_ and becomes invalid, so we cannot use node->next() anymore

which would dereference an invalid pointer. We have to use *tail_ instead. Compare

this to the following non-linear implementation.
1 void append_node_bad(ptr_type node) throw() {
2 *tail_ = node;
3 tail_ = &node->next(); // !
4 }

With ordinary pointers, the non-linear implementation is perfectly correct. Linear

pointer makes the implementation more strict by disallowing uncontrolled sharing. If

we use a linear pointer with the non-linear implementation, tail_ would be the ad-

dress of the invalid pointer plus some small offset to the member returned by next(),

75

but without triggering segmentation fault. This means that the invalid pointer in

tail_ could propagate to other method calls of the singly linked segment from a

difficult to trace origin. This can be a real problem akin to tracing uninitialized

variables. The reason no segmentation fault is triggered is because the address oper-

ator “&” computes the address obtained from next() through operator->() without

dereferencing the pointer. It is possible to fix this by adding !is_invalid() asser-

tion checks in operator->(), but this would also make linear pointer slower. Those

who value ease of debugging over speed of execution or vice versa can choose their

trade-offs.

Before we can write tests for the singly linked segment, we need a way to obtain

the list from the segment. The following function makes it possible to append another

list to the segment for the last time before getting the combined list back.
1 ptr_type clear(ptr_type rest = ptr_type()) throw() {
2 *tail_ = rest;
3 tail_ = &head_;
4 return transfer_linear(head_);
5 }

Let us write tests for appending a node. First instantiate the singly linked segment

with the node implementation in Listing 3.2 as follows.
typedef singly_linked_segment<PtrT> SegT;

The append node test builds a segment with nodes keyed from 1 through 5, then

clears the segment and deletes the resulting list after ensuring the ordering of the

keys and list length.
1 TEST(SinglyLinkedSegment, AppendNode) {
2 SegT seg;
3 for (int i = 1; i <= 5; ++i)
4 seg.append_node(PtrT(new NodeT(i, i)));
5 DeleteSortedList(seg.clear(), 5);
6 }

76

The following test illustrates the death pattern of the non-linear append node func-

tion. The segment’s tail_ pointer becomes corrupted after the first append_node_bad(),

but the error does not cause the program to die until another node is appended.
1 TEST(SinglyLinkedSegment, AppendNodeBad) {
2 SegT seg;
3 NodeT node(1, 1);
4 #if !NDEBUG
5 ASSERT_EXIT({
6 seg.append_node_bad(PtrT(&node)); // error here.
7 std::cerr << "after␣append_node_bad" << std::endl;
8 seg.append_node_bad(PtrT()); // crash here.
9 }, ::testing::KilledBySignal(SIGSEGV), "after␣append_node_bad");

10 #endif
11 }

Like the singly linked list insertion function, append_node() does not check that

the given node is a singleton node. If the caller gives a node where node->next()

is not nil, then the resulting segment would violate the invariant that *tail_ is a

nil pointer. Next time append_node() is called, the segment would be truncated at

*tail_. Without linear checking, this would cause memory leak without corrupting

the data structure. The caller might make this error if one mistakenly believes that

append_node() can append a list. Again, this is not a case where naive compiler

annotation or static analysis can detect. The following death test shows that linear

checking can detect this kind of error.
1 TEST(SinglyLinkedSegment, AppendNodeNotLone) {
2 PtrT nodes = NewList(xs, countof(xs));
3 SegT seg;
4 #if !NDEBUG
5 ASSERT_EXIT({
6 seg.append_node(nodes);
7 seg.append_node(PtrT(new NodeT(4, 4)));
8 }, ::testing::KilledBySignal(SIGABRT), "is_invalid()");
9 #endif

10 DeleteSortedList(nodes, countof(xs));
11 }

77

The append function can be generalized to append a list by fast-forwarding the

tail cursor to the end of the list as follows.
1 void append(ptr_type first) throw() {
2 *tail_ = first;
3 while (*tail_)
4 tail_ = &(*tail_)->next();
5 }

Its test is similar to the death test above, except the test will not die this time.
1 TEST(SinglyLinkedSegment, AppendList) {
2 SegT seg;
3 seg.append(NewList(xs, countof(xs)));
4 seg.append(PtrT(new NodeT(4, 4)));
5 DeleteSortedList(seg.clear(), 4);
6 }

Here is the test output after running the test to ensure that all tests pass.
[==========] Running 4 tests from 1 test case.
[----------] Global test environment set-up.
[----------] 4 tests from SinglyLinkedSegment
[RUN] SinglyLinkedSegment.AppendNode
[OK] SinglyLinkedSegment.AppendNode (0 ms)
[RUN] SinglyLinkedSegment.AppendNodeBad
[OK] SinglyLinkedSegment.AppendNodeBad (218 ms)
[RUN] SinglyLinkedSegment.AppendNodeNotLone
[OK] SinglyLinkedSegment.AppendNodeNotLone (208 ms)
[RUN] SinglyLinkedSegment.AppendList
[OK] SinglyLinkedSegment.AppendList (0 ms)
[----------] 4 tests from SinglyLinkedSegment (426 ms total)

[----------] Global test environment tear-down
[==========] 4 tests from 1 test case ran. (428 ms total)
[PASSED] 4 tests.

3.3 Singly Linked List Sorting

Sorting is an interesting case study because the problem is easy to describe, and

there are plenty of opportunities to make mistakes. As far as a singly linked list is

78

concerned, the algorithm takes as an input an unsorted list and modifies the list so

that the items become arranged in ascending order. The result is a permutation of

the original in the sense that items are merely shuffled around, neither added nor

removed. We will look at two algorithms, quick sort and merge sort. Both sort the

list using the divide and conquer strategy in O(n lg n) time in the average case.

Sorting requires that any node be comparable to any other node, but otherwise

the sorter does not need to know how the comparison is done. Again, let the template

class be parameterized by the pointer type, and the sorting algorithms will be static

methods of the class.

Listing 3.5: Singly linked list comparable template outline.
template<
class Ptr /* implements pointer<? implements

singly_linked_node<Ptr>, comparable_with<Ptr> > */>
class singly_linked_list_comparable {
public:
typedef Ptr ptr_type;
typedef singly_linked_list<ptr_type> list_type;
typedef singly_linked_segment<ptr_type> seg_type;
...

};

Quick sort starts by choosing a pivot point (typically the first node of the list),

then divides the rest of the list into two, one with nodes lesser than the pivot, and

the other with nodes greater. Each list is recursively quick sorted, then the lesser list,

the pivot, and the greater list are concatenated in order.

Listing 3.6: Quick sort of a singly linked list.
1 static void
2 quicksort(ptr_type& first) throw() {
3 // Empty list or singleton list are already sorted.
4 if (!first || !first->next())
5 return;
6

7 // Divide
8 seg_type seg;

79

9 ptr_type pivot = list_type::remove_at(first);
10

11 ptr_type *curr = &first;
12 while (*curr) {
13 if (pivot->compare_to(*curr) == LESS)
14 seg.append_node(list_type::remove_at(*curr));
15 else
16 curr = &(*curr)->next();
17 }
18

19 ptr_type lesser = first;
20 ptr_type greater = seg.clear();
21

22 // Conquer
23 quicksort(lesser);
24 quicksort(greater);
25

26 // Combine
27 seg.append(lesser);
28 seg.append(pivot);
29 seg.append(greater);
30

31 first = seg.clear();
32 }

Merge sort divides the list using two cursors as it traverses down the list, mid

which advances one node at a time, and last which advances two nodes at a time.

When last cannot be advanced further, the the list is split at mid, sorted separately,

and merged by taking the lesser element from the two sorted sublists.
Listing 3.7: Merge sort of a singly linked list.

1 static void
2 mergesort(ptr_type& first) throw() {
3 // Empty list or singleton list are already sorted.
4 if (!first || !first->next())
5 return;
6

7 // Divide
8 ptr_type *mid = &first, *last = &first;
9 while (*last && (*last)->next()) {

10 mid = &(*mid)->next();

80

11 last = &(*last)->next()->next();
12 }
13

14 // Conquer
15 ptr_type one = first, two = transfer_linear(*mid);
16 mergesort(one); mergesort(two);
17

18 // Merge
19 seg_type seg;
20

21 while (one && two)
22 seg.append_node(
23 list_type::remove_at(
24 one->compare_to(two) != GREATER ?
25 one : two));
26

27 first = seg.clear(one? one : two);
28 }

Writing tests for sorting algorithms is easy. First instantiate the singly linked list

comparable template, then make up a list in arbitrary order like this:
typedef singly_linked_list_comparable<PtrT> ListCT;
static const int ys[] = { 5, 2, 6, 4, 8, 0, 9, 7, 1, 3 };

Then just use the NewList() and DeleteSortedList() helpers we already wrote.
1 TEST(SinglyLinkedListComparable, QuickSort) {
2 PtrT first = NewList(ys, countof(ys));
3 ListCT::quicksort(first);
4 DeleteSortedList(first, countof(ys));
5 }
6

7 TEST(SinglyLinkedListComparable, MergeSort) {
8 PtrT first = NewList(ys, countof(ys));
9 ListCT::mergesort(first);

10 DeleteSortedList(first, countof(ys));
11 }

Run the test and see that both tests pass.
[==========] Running 2 tests from 1 test case.
[----------] Global test environment set-up.

81

[----------] 2 tests from SinglyLinkedListComparable
[RUN] SinglyLinkedListComparable.QuickSort
[OK] SinglyLinkedListComparable.QuickSort (1 ms)
[RUN] SinglyLinkedListComparable.MergeSort
[OK] SinglyLinkedListComparable.MergeSort (0 ms)
[----------] 2 tests from SinglyLinkedListComparable (1 ms total)

[----------] Global test environment tear-down
[==========] 2 tests from 1 test case ran. (1 ms total)
[PASSED] 2 tests.

We can check that linear pointer is working by deliberately introducing errors into

the quick sort code in Listing 3.6. If we remove line 28, we would concatenate only

the lesser and the greater lists without the pivot, and the pivot would leak. When

we run the test, we would get an error like this:
[==========] Running 1 test from 1 test case.
[----------] Global test environment set-up.
[----------] 1 test from SinglyLinkedListComparable
[RUN] SinglyLinkedListComparable.QuickSort
Assertion failed: (self()->is_invalid() || self()->is_nil()),
function ~linear_base, file ...

3.4 Augmented Linked List

Now that we’ve seen a singly linked list implementation using linear pointers, the

reader may ask “what about doubly linked list?” Whereas a singly linked node has

only the next pointer, a doubly linked node has both the next and the previous

pointer. The previous pointer allows bidirectional traversal, but most often it is used

for in-place removal of a node if only a reference to the node is available, but not a

reference to the pointer that owns the node. To remove a node, one will connect the

predecessor’s next pointer to the successor, and the succesor’s previous pointer to the

predecessor, isolating the current node.

82

The tricky part for removal is to handle the corner cases for the first node that

has no predecessor, and the last node that has no successor. But there are pointers

elsewhere that point to the first and last nodes, and they must be updated. Insertion

also has the analogous considerations. What if we are trying to insert before the first

node or after the last node? What if the list is initially empty? If the corner cases

are not handled correctly, it would lead to data structure corruption that manifest

later appearing as a different problem. Although doubly linked list is a standard

data structure taught as part of an undergraduate curriculum in computer science,

its redundancy and corner cases make it tedious to implement correctly.

A careful reader will notice that linear pointer cannot be used with doubly linked

lists: only one of the previous or the next pointer can be linear because exactly one

linear pointer to the node is allowed. The other pointer must be the “loan” pointer.

Alternatively, if we only need in-place removal but not bidirectional traversal, then

in lieu of the previous pointer, we can just store the reference to the owner pointer so

that we can perform ownership stealing. The benefit, however, is the drastic reduction

of corner cases. There is only one corner case: dealing with the nil pointer which

has no owner. Not handling this case causes an immediate segmentation fault.

In order for a node to be used as part of an augmented linked list, it must imple-

ment the ownership interface like this:

Listing 3.8: Ownership interface.
1 template<class Ptr>
2 class ownership {
3 public:
4 typedef Ptr ptr_type;
5

6 ptr_type *owner() const throw();
7 ptr_type *& owner() throw();
8 };

A template for augmented linked list follows the same fashion as the singly linked

83

list. The class will only have static methods.

Listing 3.9: Augmented linked list template outline.
1 template<
2 class Ptr /* implements pointer<? implements
3 singly_linked_node<Ptr>, ownership<Ptr> > */>
4 class augmented_linked_list {
5 public:
6 typedef Ptr ptr_type;
7 typedef typename Ptr::element_type node_type;
8 ...
9 };

Node insertion and removal are very similar to that of singly linked list. The only

differences are the lines that are marked with “// !” which update the ownership.

All the other lines are exactly identical. The corner case handling of the nil pointer

is guarded by an if-statement.
1 static ptr_type&
2 insert_at(ptr_type node, ptr_type& curr) throw() {
3 assert(node);
4

5 if (curr) curr->owner() = &node->next(); // !
6 node->next() = curr;
7

8 node->owner() = &curr; // !
9 curr = node;

10

11 return curr;
12 }
13

14 static ptr_type
15 remove_at(ptr_type& curr) throw() {
16 ptr_type node(curr);
17 node->owner() = NULL; // !
18

19 curr = transfer_linear(node->next());
20 if (curr) curr->owner() = &curr; // !
21

22 return node;
23 }

84

To remove a node in the absence of a cursor to its owner, we will recover the owner

from the node itself. The in-place removal is simply:
1 static ptr_type
2 remove_at(node_type& node) throw() {
3 assert(node.owner() != NULL);
4 return remove_at_unsafe(*node.owner());
5 }

As an exercise to the reader, unit tests can be written in the same fashion as

those for the singly linked list, so they are omitted here. All that is required is to

add the owner() method to class Node in Listing 3.2, and instantiate ListT from

augmented linked list instead of singly linked list.

For sorting, it is more efficient to temporarily regard an augmented linked list as

a singly linked list, then fix the node ownership after the whole list is sorted, using

the following function.
1 static void
2 relink(ptr_type& first) throw() {
3 for (ptr_type *curr = &first; *curr; curr = &(*curr)->next())
4 (*curr)->owner() = curr;
5 }

3.5 Binary Search Tree

A binary tree is a data structure consisting of nodes with two pointers to the left

and right subtrees. The nil pointer indicates the empty tree or the leaf. A binary

search tree is a binary tree where the nodes have a total order when compared with

one another, and ordering constraint is imposed on the left and right subtrees. In a

binary search tree, the left subtree contains only the nodes that compare less than

the parent, and the right subtree contains only the nodes that compare greater than

the parent.

85

The ordering constraint facilitates searching; during traversal, only one of the

subtrees need to be visited depending on whether the node to look for is less than

(left) or greater than (right) the current node. If the tree is perfectly balanced,

each descend eliminates half of the tree to visit. In general, the number of visits

during traversal is bounded by tree height. A perfectly balanced binary tree of size

n has height lg n, so traversal is in O(lg n) time. Even if a tree is not perfectly

balanced, as long as the tree height is within a constant factor to the height of the

perfectly balanced tree, the node lookup time is still O(lg n) since the height is c lg n

for some constant factor c. This approximately balanced binary search tree underlies

the performance characteristics of variants such as AVL tree [4], red-black tree [60],

and splay tree [106]. Tree rotation is used to adjust the tree height in order to keep

the binary search tree approximately balanced.

If the binary search tree must also allow nodes that compare equal, then we relax

the ordering to be less than or equal to and greater than or equal to, for the left and

right subtrees respectively. This relaxation has to be done for both left and right

subtrees in order to accommodate tree rotation. Otherwise it would be impossible

to keep the tree approximately balanced if there is a long series of equal nodes in

the tree. Tree rotation preserves the stable order of the equal nodes in a series, but

the node closest to the root may be any node in the series, not necessarily the first

nor the last. This requires special consideration if the lookup, insertion, and removal

were to observe the stable order.

Memory allocator uses binary search tree to index free objects of various sizes.

Although several objects of the same size could be present in the tree, the stable

order is unimportant. Objects can also be disambiguated by comparing their size as

well as their memory address. Binary search tree allows lookup of a node that is the

least greater than, or the greatest less than the desired node. The former is used to

86

implement an allocation strategy known as best-fit.

In a similar minimalist fashion as singly linked node, the binary tree node here

implements accessors for the left and right pointers only. Here the is_lone() pred-

icate returns true if both the left and right subtrees are empty, and false otherwise.

Again, the node defines no key nor value.

Listing 3.10: Binary tree node.
1 template<
2 class Ptr /* implements pointer<? extends binary_tree_node_impl<Ptr> > */>
3 class binary_tree_node_impl /* implements binary_tree_node<Ptr> */ {
4 public:
5 typedef Ptr ptr_type;
6

7 binary_tree_node_impl() throw()
8 : left_(), right_() {}
9 bool is_lone() const throw() {

10 return !left_ && !right_;
11 }
12

13 const ptr_type& left() const throw() { return left_; }
14 ptr_type& left() throw() { return left_; }
15 const ptr_type& right() const throw() { return right_; }
16 ptr_type& right() throw() { return right_; }
17

18 private:
19 ptr_type left_, right_;
20 };

Here are the binary search tree traversal functions, parameterized by a pointer

to the node. In this implementation, a node is not required to be comparable with

another node, but instead a comparator is used for this purpose. The reason will

become apparent when splay tree is introduced below. The simple traversal here does

not attempt to re-balance the tree in any way.

Listing 3.11: Binary search tree traversal.
1 template<
2 class Ptr /* implements pointer<? implements binary_tree_node<Ptr> > */>
3 struct binary_search_tree_find_impl {

87

4 public:
5 typedef Ptr ptr_type;

The find() function takes the root of the tree and returns a cursor, which is

a reference to the linear pointer that owns the node to be removed or must take

ownership in order to insert a node. The comparator compares itself with the each

visited node. The comparator directs the traversal to the left subtree if it returns

LESS, to the right subtree if it returns GREATER, or returns the cursor to the current

node if it returns EQUAL. If no node compares equal, returns the cursor to the nil

pointer where the node would be inserted.
6 template<class Comparator /* implements comparable_with<Ptr> */>
7 static ptr_type&
8 find(Comparator& cmp, ptr_type& root) throw() {
9 ptr_type *curr = &root;

10 while (*curr) {
11 ord_t dir = cmp.compare_to(*curr);
12 if (dir == LESS)
13 curr = &(*curr)->left();
14 else if (dir == GREATER)
15 curr = &(*curr)->right();
16 else /* if (dir == EQUAL) */
17 break;
18 }
19 return *curr;
20 }

The find_limit() function looks up a node with a relaxed limit. If the limit is

GREATER, returns a node that is the minimal greater than or equal to the comparator.

If the limit is LESS, returns a node that is the maximal less than or equal to the

comparator. The function returns the cursor to the nil pointer if no such node

exists, in which case the cursor also indicates where the node would be inserted.
21 template<class Comparator /* implements comparable_with<Ptr> */>
22 static ptr_type&
23 find_limit(Comparator& cmp, ord_t limit, ptr_type& root) throw() {
24 ptr_type *curr = &root, *foundp = NULL;

88

25

26 while (*curr) {
27 ord_t dir = cmp.compare_to(*curr);
28 if (dir != limit || dir == EQUAL)
29 foundp = curr;
30

31 if (dir == LESS)
32 curr = &(*curr)->left();
33 else if (dir == GREATER)
34 curr = &(*curr)->right();
35 else /* if (dir == EQUAL) */
36 break;
37 }
38 return (foundp != NULL)? *foundp : *curr;
39 }

Several other tree traversal functions can be written in terms of find(), but the

discussion is postponed for now.
40 };

It is worth noting that the way find() returns a cursor for the purpose of both

node insertion and removal will not work for AVL tree or red-black tree, since the tree

restructuring they perform has to be done differently depending on whether the node

is to be inserted or removed. However, find() is analogous to the splay operation on

a splay tree, which restructures the tree during lookup. The cursor can still be used

to insert or remove a node after the splay takes place.

3.6 Splay Tree

A splay tree, due to Sleator and Tarjan [106], is a self-adjusting binary search tree

with the splay operation which moves a node to the root during traversal in a way

that halves the distance to the root for all the nodes along the traversed path. The

splay operation deals with zig-zig and zig-zag traversal differently, but both can be

89

expressed in terms of tree rotation. Splay tree has the “memory effect” where fre-

quently accessed nodes are closer to the root and faster to access, a property which

no other approximately balanced binary search tree has.

Splaying can be done in two ways, the bottom-up fashion where the tree structure

is adjusted as the node ascends to the root, or the top-down fashion as shown in

Figure 3.1 where the main tree is split into left and right subtree accumulators as the

traversal descends towards the node, with the final tree consisting of the found node

at the root with the accumulated left and right subtrees combined the node’s left

and right subtrees. In order to perform the final combination, an important ordering

invariant (Proposition 9) must be maintained throughout. As the size of the size

of the main tree diminishes, the left subtree grows towards the right, and the right

subtree grows towards the left.

Proposition 9 (Top-Down Splay Invariant). During top-down splay, the left subtree

accumulator nodes are all less than the nodes in the main tree, and the right subtree

accumulator nodes are all greater than the nodes in the main tree.

The accumulation of subtree is called linking. When linking occurs, the node to

be accumulated is placed at the growth point, denoted by a question mark. Zig-zig

also applies rotation before linking. Linking and rotation are the primitive splay tree

operations. The top-down splay implementation here makes heavy use of cursor for

tracking the growth point for linking, as well as the pivot point for rotation.

Listing 3.12: Splay tree operations.
1 template<
2 class Ptr /* implements pointer<? implements binary_tree_node<Ptr> > */>
3 struct simple_splay_tree_operations
4 /* implements splay_tree_operations<Ptr> */ {
5 typedef Ptr ptr_type;
6

7 static void move(ptr_type& to, ptr_type& from) throw() {

90

L

x

A

y

B
R L A

y

Rx
?

B
(a) zig

L

x
y

A

z

B
C

R L A

z

Ry
? x

B C
(b) zig-zig

L

x
y

A B

z
C

R L y

A

?
B

z

Rx
?

C
(c) zig-zag

L ?

x

A B
R?

x

L

A

R

B
(d) final

Symmetric counterparts of zig, zig-zig and zig-zag are omitted.
Reproduced from [106] under fair use; permission pending.

Figure 3.1: Top-down splay.

91

8 to = from;
9 }

10

11 static void rotate_left(ptr_type& curr) throw() {
12 ptr_type x(curr), y(x->right());
13 x->right() = y->left();
14 y->left() = x;
15 curr = y;
16 }
17

18 static void rotate_right(ptr_type& curr) throw() {
19 ptr_type y(curr), x(y->left());
20 y->left() = x->right();
21 x->right() = y;
22 curr = x;
23 }
24

25 static ptr_type *link_left(ptr_type& curr, ptr_type *leftp) throw() {
26 *leftp = curr;
27 curr = (*leftp)->right();
28 return &(*leftp)->right();
29 }
30

31 static ptr_type *link_right(ptr_type& curr, ptr_type *rightp) throw() {
32 *rightp = curr;
33 curr = (*rightp)->left();
34 return &(*rightp)->left();
35 }
36 };

These operations can be implemented for augmented splay tree as well, in the same

fashion as augmented linked list. Although these functions have been unit tested, the

tests are omitted here. The reader is encouraged to try writing his own tests and find

ways to deliberately break these functions and see if linear pointer can catch these

breakages.

Based on the linking and rotation, we can implement find() and find_limit()

with splaying as follows. Note that these functions are actually interchangeable with

their binary search tree cousins.

92

Listing 3.13: Splay tree find implementations.
1 template<class Oper /* implements splay_tree_operations<?> */>
2 struct splay_tree_find_impl {
3 typedef Oper oper_type;
4 typedef typename oper_type::ptr_type ptr_type;

The find() function here is equivalent to the same function for binary search

tree, except that top-down splaying is performed, which changes the structure of the

tree. In the following code listing, the variables left and right are used to store

the roots of the accumulated left and right subtrees, and leftp and rightp are the

cursors within the left and right subtrees respectively where the linking should take

place. These cursors always point to nil pointers.
5 template<class Comparator /* implements comparable_with<Ptr> */>
6 static ptr_type&
7 find(Comparator& cmp, ptr_type& root) throw() {
8 if (!root)
9 return root;

10

11 ptr_type left, right, curr(root);
12 ptr_type *leftp = &left, *rightp = &right, *foundp = &root;
13

14 do {
15 ord_t dir = cmp.compare_to(curr);
16 if (dir == LESS) {
17 if (!curr->left()) {
18 foundp = left? leftp : &curr->left();
19 break;
20 }
21

22 ord_t dirl = cmp.compare_to(curr->left());
23

24 if (dirl == LESS && curr->left()->left())
25 oper_type::rotate_right(curr);
26

27 rightp = oper_type::link_right(curr, rightp);
28

29 if (dirl == GREATER && curr->right())
30 leftp = oper_type::link_left(curr, leftp);

93

31

32 } else if (dir == GREATER) {
33 if (!curr->right()) {
34 foundp = right? rightp : &curr->right();
35 break;
36 }
37

38 ord_t dirr = cmp.compare_to(curr->right());
39

40 if (dirr == GREATER && curr->right()->right())
41 oper_type::rotate_left(curr);
42

43 leftp = oper_type::link_left(curr, leftp);
44

45 if (dirr == LESS && curr->left())
46 rightp = oper_type::link_right(curr, rightp);
47

48 } else /* if (dir == EQUAL) */ {
49 // foundp = &root;
50 break;
51 }
52 } while(true);
53

54 oper_type::move(*leftp, curr->left());
55 oper_type::move(curr->left(), left);
56 oper_type::move(*rightp, curr->right());
57 oper_type::move(curr->right(), right);
58 oper_type::move(root, curr);
59

60 return *foundp;
61 }

The trickier corner case arises when the equal node could not be found. By con-

tract of the binary search tree find(), the function must return a cursor to the nil

pointer where such node may be inserted. The handling is done on lines 17–20 as well

as lines 33–36, with special consideration to prevent either cursor to the stack vari-

ables left and right leaking to the caller. Otherwise, these cursors would reference

invalidated pointers after the function returns. Everything else is straightforward

94

adaptation of the pseudo-code presented by Sleator and Tarjan.

The cursor returned by find() can indeed be used for insertion just like binary

search tree, but that inserts the node towards the bottom of the tree as opposed to the

top. That is not how node insertion was originally proposed [106, §3], which splays

the tree at the insertion point, splits the tree and uses the new node to join the two

trees. The split is possible due to the top-down splay invariant in Proposition 9. The

split and join insertion allows the node to be inserted at the root, which may be an

advantage if the node is to be accessed immediately after, but splitting and joining

also takes extra work. In practice, the performance difference is not obvious.

Here is the find_limit() function. Like the same function for binary search tree,

the foundp cursor is used to tighten the bounds whenever a comparison occurs. It will

point to curr most of the times, but it needs to be fixed upon linking and rotation.

Also, foundp may point to the stack variables left, right, and curr respectively.

This will be fixed at the end.
62 template<class Comparator /* implements comparable_with<Ptr> */>
63 static ptr_type&
64 find_limit(Comparator& cmp, ord_t limit, ptr_type& root) throw() {
65 if (!root)
66 return root;
67

68 ptr_type left, right, curr(root);
69 ptr_type *leftp = &left, *rightp = &right, *foundp = NULL;
70

71 ord_t dir;
72

73 do {
74 dir = cmp.compare_to(curr);
75 if (dir != limit || dir == EQUAL)
76 foundp = &curr;
77

78 if (dir == LESS) {
79 if (!curr->left())
80 break;

95

81

82 ord_t dirl = cmp.compare_to(curr->left());
83

84 if (dirl == LESS && curr->left()->left())
85 oper_type::rotate_right(curr);
86

87 if (foundp == &curr)
88 foundp = rightp;
89 rightp = oper_type::link_right(curr, rightp);
90

91 if (dirl == GREATER && curr->right()) {
92 if (dirl != limit)
93 foundp = leftp;
94 leftp = oper_type::link_left(curr, leftp);
95 }
96

97 } else if (dir == GREATER) {
98 if (!curr->right())
99 break;

100

101 ord_t dirr = cmp.compare_to(curr->right());
102

103 if (dirr == GREATER && curr->right()->right())
104 oper_type::rotate_left(curr);
105

106 if (foundp == &curr)
107 foundp = leftp;
108 leftp = oper_type::link_left(curr, leftp);
109

110 if (dirr == LESS && curr->left()) {
111 if (dirr != limit)
112 foundp = rightp;
113 rightp = oper_type::link_right(curr, rightp);
114 }
115

116 } else /* if (dir == EQUAL) */ {
117 break;
118 }
119 } while(true);
120

121 oper_type::move(*leftp, curr->left());
122 oper_type::move(curr->left(), left);

96

123 oper_type::move(*rightp, curr->right());
124 oper_type::move(curr->right(), right);
125 oper_type::move(root, curr);
126

127 if (foundp == &curr)
128 foundp = &root;
129 else if (foundp == &left)
130 foundp = &root->left();
131 else if (foundp == &right)
132 foundp = &root->right();
133 else if (foundp == NULL) {
134 if (limit == LESS)
135 foundp = &root->left();
136 else if (limit == GREATER)
137 foundp = &root->right();
138 assert(!*foundp);
139 }
140

141 return *foundp;
142 }

And this concludes the splay tree operations.
143 };

3.7 Conclusion

This chapter presents the implementation of data structures and algorithms that

observe linear ownership semantics, and can be used with linear pointers introduced

in Chapter 2. Unit testing is a powerful tool for finding programming error. A test is

a short routine that exercising only a small pieces of the program at a time, making

it easy to narrow down the scope of the error. We write unit tests to show that the

implementation is functionally correct, as well as to show that linear pointer is able

to find memory errors immediately when it happens. This justifies linear pointer as

an effective technique for writing safe and correct programs.

97

The notion of cursor is developed as a programming technique to allow traversal

of data structures without modifying linear pointers. It has the benefit of simplifying

corner cases and reducing programming error. Both singly linked list and binary

search tree make heavy use of cursor. A singly linked segment is built using singly

linked list and a tail cursor. Such segment can pop from head and append to tail,

which allows it to be used like a queue. An augmented linked list shows how cursors

can be used for in-place modification. Quick sort and merge sort are the two sorting

algorithms presented which shows how to use singly linked list and singly linked

segment. In a strictly linear system, writing data structure traversal routines would

require constanting taking node ownership from the data structure and returning it.

This would make traversal extremely tedious. The cursor is a mechanism to relax the

linear semantics, by observing that a reference to a linear pointer need not be linear.

Singly linked list and binary search trees are commonly used in a memory alloca-

tor. The singly linked list is used for keeping free objects in a segregate-fits strategy.

The binary search tree is used for best-fit. Splay tree is a self-balancing binary search

tree that avoids worst case search time. This chapter supplies the necessary data

structures for a memory allocator based on an implementation that is verified to be

safe using linear pointers.

Chapter 4

Design of the Memory Allocator

Back in the introduction, it was mentioned that linear pointer is motivated by the

need of a memory management discipline that is simple, safe, and efficient. Linear

pointer is a method to assist programmers correctly manage memory manually. The

manual management stands in contrast to automatic memory management such as

garbage collection. Although garbage collection takes the burden of memory manage-

ment off the programmer and increases productivity, garbage collection can become

a performance and scalability bottleneck which means greater cost in production.

Performance penalty over millions of machines would dwarf the initial programmer

productivity gain.

Throughout the dissertation, linear pointer is shown to be simple and safe. We

argued that it is also efficient due to the erasure property, namely that once a program

is tested with linear checking, then linear checking can be disabled without incurring

any runtime overhead and still result in a correct program. But is it really efficient

in practice?

To answer this question, this chapter describes a memory allocator built using

linear pointers and linear data structures. The memory allocator is chosen for showing

99

the efficiency of linear pointer for two reasons: (1) there are many other extremely

competitive memory allocators as a culmination of over three decades of research that

can be used for the baseline of the comparison, and (2) the end result is a memory

allocator that has no memory leak, thanks to the safety guarantee of linear pointer.

Building such an allocator completes the full circle of the following rhetoric: what

good is a program with no memory leak, if the memory allocator would leak memory

on its behalf?

Our goal is not to exceed existing memory allocators in performance. After all,

these allocators have undergone many years of profiling, optimization, and design

evolution. Furthermore, the design here is inspired by those of existing allocators,

so we do not expect performance breakthrough. The memory allocator here can be

summarized as follows, and its construction will be described in more detail in the

rest of the chapter.

Segregated object size class allocation. Upon allocation, object sizes are fit

into size classes, and each class allocates objects from a different heap. A mixed of

strategies are used by different size classes in order to control fragmentation. The

packed heap classes use singly linked lists to index objects of the same size without

header. Medium sized objects use best-fit heap classes with boundary tags [78, pp.

442] to delimit coalesceable objects, and objects are indexed using a top-down splay

tree [106]. The size classes of medium sized objects progress in powers of 2, so that the

worst worst-case fragmentation is bound to 3 times the used memory without paying

the upfront cost of internal fragmentation. The large object heap class allocates

memory in page sized units directly from virtual memory but uses a hash table of

splay trees to keep track of allocated objects and their sizes.

100

Address space configuration. The allocator uses a fixed zone size of 224 bytes,

or 16MB, and zones are naturally aligned to this size. Each zone is dedicated to

allocate heaps of a particular size. The allocator uses zones to allocate heaps sized

214 through 220 bytes in powers of two. The following table summarizes the relation

between allocation strategy, object size classes, and heap size.

Strategy Object Size Classes Heap Size

Packed heap

8 . . . 64 214

in multiples of 8

72 . . . 128 215

in multiples of 8

Best-Fit heap

28 . . . 212 216 . . . 220

in powers of 2

213 . . . 216 220

in powers of 2

Large allocation >16KB N/A

in 4KB units.

Static preference in heap selection. Address space is divided into zones, and

zones are divided into heaps appropriate of the object size class allocation strategy.

The heaps are recycled as they are depleted and refilled. The bias prefers choos-

ing a heap from the lowest address, which minimizes the spread of program objects

throughout the address space. This improves locality and reduces memory footprint.

The policy approximates first-fit at a global scale. A precedent of this strategy was

mentioned in PhkMalloc [76].

101

Thread-local heaps. Lock contention and false sharing of cache line are two main

performance hazards of a multi-threaded program. To avoid these problem, the allo-

cator provides each thread with their private heaps so threads can manage their local

memory without synchronizing with other threads. This design is prevalent in multi-

threaded memory allocators such as Hoard [15] (2000–2009), TcMalloc [53] (2005–

current), JeMalloc [48] (2006–current). To effectively deal with producer-consumer

threads where an object is allocated in the producer thread, migrated to a consumer

thread, and subsequently freed, a remote free mechanism is used as described by au-

thors of the Streamflow allocator [100] (2006–2010). Both packed and best-fit heaps

are thread local. Large allocation uses a shared hash table with fine-grained per-slot

locks.

4.1 Zones and Zone Map

Zone is the coarsest level at which the allocator organizes address space. Each zone

has a fixed size of 224 bytes, or 16MB. Information about a zone is stored in a zone

map, which is a dictionary mapping from zone number (or a rounded-down address)

to some arbitrary value type. Each zone contains heaps of the same sizes but not

necessarily the same type. Different zones may have different heap sizes. In our

configuration, there are zones allocating heaps of sizes 214 through 220 bytes in powers

of two. We store the exponent of the size in base 2 in the zone map.

Heaps in the zone are allocated in the fashion of a singly linked list in stack

(last-in first-out) order. However, instead of using zone memory for the linked data

structure, there is an external zone descriptor representing the linked list using an

array of heap indices. In case the zone memory has already been swapped out, this

allows us to check that all heaps are returned to the zone before we unmap the zone

102

memory without causing thrashing. Storing both zone map data structure and zone

free list of heaps separately from program memory reduces the risk that program

buffer overrun might corrupt zone metadata.

The zone map allows the heap header to be quickly located. Given the pointer

to an object, if the zone map lookup succeeds and returns x, then the least x bits of

the pointer is masked to yield the address of the heap header. All initialized heaps

contain a heap header with a magic word which is chosen to be a pointer to the

address of the magic word itself, since a circular reference like that is extremely rare

in a normal program. If the magic word is valid, then the heap header may be used

to determine heap type, free an object, and query object size. In order to keep things

simple, we let heap sizes 214 and 215 to be used for packed heaps, and greater heap

sizes to be used for best-fit heaps, so we can determine the heap type by heap size

alone.

A naive implementation of the zone map might use the address space itself to do

the mapping. Let each zone be prefixed by a zone header that contains the desired

information about the zone. All heaps allocated from the zone would reserve space

for this header, but only the first heap’s zone header is used. To lookup information

about the zone, simply truncate the lowest zone size bits of any pointer, which gives

the address of the first zone header. This would work only if the address space

contains nothing but zones. In reality, the address space also contains code, data,

and stack. The allocator also maps large objects without using zones. Large objects

are a challenge because zone lookup may crash the allocator when the program tries

to free a legitimate object, unless large objects are allocated from zones dedicated to

them, meaning that they would be limited to zone size.

It might be acceptable if a program crashes with access violation due to a zone

lookup, in which case the zone is definitely invalid, but invalid zone lookup does not

103

guarantee a program to crash and therefore cannot be detected reliably. One way to

improve the odds is by using the magic word technique to detect non-zone memory.

The advantage of the naive approach is that it is extremely fast.

A reliable zone map would have to be stored in a separate data structure. For

a machine architecture with 32-bit address space, there are 256 zones, so the zone

map is small enough to maintain in an array. For a 64-bit machine, a shared hash

table with individually locked splay tree buckets is used to maintain the zone map.

To reduce overhead, each node in the splay tree contains zone records of several

contiguous zones. To speed up the lookup, each thread keeps a thread-local cache of

the zone map. The cache is a two-way set associative cache. Each cache line holds two

mapping entries, using swap to maintain the property that one is the most recently

used than the other. Upon eviction, the least recently used entry is replaced by the

newly looked up mapping, but it is also promoted as the most recently used entry.

A 32 entry two-way cache for 16MB zones will retain a maximum working set size of

1GB.

Cache invalidation is required when a zone is deleted from the map, but not

when a zone is added. That is because the newly added zone will not be present

in any zone map cache until it is accessed. However, when a zone is deleted, any

cache that contains a mapping for that zone is no longer valid. The simple solution

is to increment a version counter whenever a zone is deleted, and a thread would

flush its zone map cache whenever it detects a change in the version counter. Zone

deletion unmaps the virtual address occupied by the zone, which is an expensive

operation as it involves Translate Look-aside Buffer (TLB) shoot-down coordinated

by the operating system through inter-processor interrupts (IPI). Therefore, the cost

of zone map cache flush is relatively insignificant. In a sense, zone map cache may be

considered a shadow of the TLB.

104

In order to ensure that zones are naturally aligned to zone size, a virtual mem-

ory twice the size of the zone is requested first, and the excess portions are trimmed

off. Although memory mapping needs are fulfilled by the operating system’s virtual

memory manager, this allocator maintains an mmap() cache layer to reduce the num-

ber of mapping and unmapping system calls that is a consequence of the alignment

requirement of the zones. This cache layer maintains a small number of spans (there

are 16 spans in our configuration) sorted in increasing address order.

For mapping, pages are allocated, similar to first-fit, from the lowest addressed

span that could satisfy the request. If no span is large enough, the request is passed

on to the operating system. This search is O(n) where n is the number of spans.

For unmapping, pages are merged to the adjacent spans found using binary search,

in O(lg n) time. If no adjacent spans are found, the largest span is evicted, and the

unmapped pages are inserted as a span using insertion sort, in O(n) time. Since n

is small, the cost is insignificant compared to the system call overhead that the span

cache saves. The mmap() cache is shared by zone, large object allocation, as well as

the memory backing the allocator’s own data structures.

The mmap() cache reduces the cost associated with TLB shoot-down by reducing

the number of unmap operations. When the OS unmaps memory, it must tell the

processor to update its view of the address space by flushing the TLB. When there

are threads running on multiple processors, the OS must ensure that all processors

sharing the same address space flush their TLB, by issuing inter-processor interrupts

and wait for the interrupt handlers on each processor flush their TLB. The TLB

shoot-down is costly not only because priming the TLB after a flush slows down the

program, but also the waiting.

105

4.2 Heaps and Pool Management

A heap specification consists of the implementation of the heap, which is either a

packed heap or a best-fit heap, and a pool of heaps that provisions the heap from

a specific zone type, and therefore sets the size of the heap. There is one heap

specification for each object size class. The heap implementation is built on top of a

base class defined as follows:
1 class heap_base
2 : public safe_cast_base,
3 public remote_free_access_impl {
4 public:
5 heap_base(const heap_info& info) throw()
6 : info_(info) {}
7

8 // Implements parts of heap_status_access
9 volatile size_t& amount_collect() volatile throw() { return amount_collect_; }

10

11 // Implements access to heap_info.
12 const heap_info& info() const volatile throw() { return info_; }
13

14 private:
15 const heap_info& info_;
16 size_t amount_collect_;
17 };

The base class safe_cast_base maintains the magic word for locating valid heap

given an object pointer: its constructor initializes the magic word, and its destructor

erases the magic word so that it is no longer valid. The remote_free_access_impl

contains a linear atomic pointer to the first node of the remote free list, manipulated

using non-blocking list insertion to be described in Section 5.6. The heap_info

describes the characteristic of the heap: the size class index, heap size, and the object

size it allocates. In addition, the heap_base also implements part of the heap status

that tracks the number of bytes of the remote free objects. Together with the following

106

structure that tracks the number of bytes allocated in the thread-local fashion, a heap

would implement the heap_status_access interface used by heap_status<> which

wraps any heap implementation to account for the number of bytes used. The reason

the interface has a split implementation is that we can align the shared and local

parts of the heap base into different cache lines to reduce false sharing.
18 class heap_access_local {
19 public:
20 // implements parts of heap_status_access
21 size_t& amount_used() throw() { return amount_used_; }
22 size_t amount_used() const volatile throw() { return amount_used_; }
23

24 private:
25 size_t amount_used_;
26 };

Heaps are maintained in a recycle pool which indexes available heaps, which are

not being used by any thread for allocation, but are candidates when a thread needs

a heap. Since any heap can be remotely freed, a heap can replenish even when no

thread has acquired it, so heaps cannot generally be indexed by availability. When

a thread determines that a heap has depleted, it disposes the heap back into the

pool and acquires another heap with available capacity. A reused available heap is

obtained from the lowest address; therefore, all heaps are indexed by their addresses.

When a heap is released, the pool would scan the available heaps when the number

of available heaps to the number of depleted heaps surpasses a certain ratio. The

scan would set aside a small number of highest addressed heaps for examination and

separate full and non-full heaps. A heap is full if no objects are allocated from the

heap. The full heaps are released back to the zone. The non-full heaps are placed into

a graduate heaps pool so they are not scanned again in a while. The graduate heaps

would become available again when the available heaps are exhausted. Heap scan

frequency and rate would affect the program’s apparent memory usage as accounted

107

by the operating system, but this has not been studied in detail in this work. The

nature of these parameters is like garbage collection: the allocator could do more

work to tighten memory usage which sacrifices throughput, or to increase throughput

by using more memory. The difference is that since pool management is outside of

the critical path of object allocation, these overheads cause only minor impact on

program performance.

It makes little sense to index depleted heaps because scanning them for availability

would take more time as the program’s actual memory usage grows. Instead, depleted

heaps are temporarily removed from the pool and become self-owned, i.e. the heap

contains a member pointer that owns itself. A remote free would touch the heap,

and if the heap is self-owned, would check the heap’s availability and reclaim the

heap as an available heap if the amount of available bytes to the heap size reaches a

certain ratio. As a potentially faster alternative, rather than accounting for a heap’s

availability, a touch would simply reclaim the heap when remote frees have taken

place some number of times.

A heap in the pool can be indexed either in a binary search tree (splay tree) or

as part of a singly linked list. The following node definition reuses the left pointer of

the binary tree node for singly linked list.
27 template<class Ptr>
28 class heap_node
29 : public self_key<Ptr>,
30 public with_value<Ptr>, // self-ownership
31 public binary_tree_node_impl<Ptr> {
32 private:
33 typedef Ptr ptr_type;
34

35 public:
36 // Implements singly_linked_node<Ptr> by reusing left() as next().
37 ptr_type& next() throw() { return this->left(); }
38 const ptr_type& next() const throw() { return this->left(); }
39 volatile ptr_type& next() volatile throw() { return this->left(); }

108

40 const volatile ptr_type& next() const volatile throw() {
41 return this->left();
42 }
43 };

The self_key<Ptr> base implements an ordered key based on the address of the

heap. The node also carries a linear pointer for self-ownership of disposed heap.

The heap specification consists of the pointer type of the heap, the heap’s im-

plementation which is either packed or best fit, the heap access which defines the

start and stop addresses of the heap, the final heap type, and the pool type. It looks

roughly like this, with the concrete definition of the pool omitted.
44 template<
45 template<class Self> class Impl,
46 template<class Self> class Access>
47 struct heap_spec {
48 class heap_type;
49 typedef linear_atomic_ptr<heap_type> ptr_type;
50

51 typedef Impl<heap_type> impl_type;
52 typedef Access<heap_type> access_type;
53

54 class heap_type
55 : public heap_base,
56 public heap_node<ptr_type>,
57 public cache_aligned<heap_access_local>,
58 public access_type,
59 public heap_status<heap_type, impl_type> /* extends impl_type */ {
60 public:
61 heap_type(const heap_info& info) throw()
62 : heap_base(info) {}
63

64 using heap_node<ptr_type>::next;
65 };
66

67 class pool_type;
68 };

109

The resulting memory layout of the heap on a 64-bit machine would be sim-

ilar to what the following table shows. We use la_ptr<> as an abbreviation for

linear_atomic_ptr<> (see Section 5.3).

Offset Type Description

0x0000 uintptr_t Magic word.

0x0008 la_ptr<free_list::node> Remote free list.

0x0010 const heap_info& Reference to heap description.

0x0018 size_t Number of remote-freed bytes.

0x0020 la_ptr<heap_type> Self-ownership.

0x0028 la_ptr<heap_type> Binary tree left, or singly linked list next.

0x0030 la_ptr<heap_type> Binary tree right.

... Pad to cache line.

0x0040 size_t Number of locally allocated bytes.

0x0048 void * Heap memory start address.

0x0050 void * Heap memory end address.

0x0058 Other heap-type specific fields.

... Heap memory start.

... Heap memory end.

4.3 Linearity Issues

Linear ownership semantics is all about resource management; in this case, the re-

source managed by the allocator is memory. The allocator is like a broker which

obtains memory from the operating system in whole sale, divides them into smaller

chunks, and distributes them to the application program. Linear pointers are used

110

from zones to heaps to individual objects in the heap where possible.

The memory allocator itself makes use of a metadata allocator for zone map

nodes, zone descriptor, large object descriptor, as well as thread local descriptor. The

metadata allocator is similar in principle to CustoMalloc [59] where an allocator is

synthesized according to the object types used by the program. The synthesis takes

place using C++ template instantiation of a class with a static member which is

the homogeneous allocator of the desired object size. All instantiations for metadata

objects of the same size will use the same allocator. The memory is backed by mmap()

cache.

A zone consists of the memory obtained from the mmap() cache and the zone

descriptor metadata which stores the allocation map for heaps within the zone. The

association of the zone memory and zone descriptor cannot be checked by linear

pointer, but we encapsulate this association using “zone factory” which contains the

introduction and elimination functions for a zone. The introduction calls mmap(),

sets the zone map according to the resulting address, and allocates the zone descriptor

for that address. The elimination clears the zone map for the address, unmaps the

zone, and frees the zone descriptor. When implementing the zone factory using a

theorem-proving language, the introduction requires the linear proof transfer axiom

mmap(p) ⊗ zonemap(p) ⊗ desc(p)@q (zone(p)@q, where p is the zone’s address,

mmap(p) is the linear proof obtained from mmap(), zonemap(p) is the linear proof

obtained from the zone map setter (so the caller does not forget resetting), desc(p)@q

is a zone descriptor obtained from the metadata allocator for zone at address p but

the descriptor itself is at address q, and finally zone(p)@q is the introduced token

for zone at address p. The elimination requires the axiom in reverse: zone(p)@q (

mmap(p)⊗ zonemap(p)⊗ desc(p)@q.

After a zone is created, the zone’s ownership is managed using linear pointer. A

111

zone becomes part of a homogeneous size allocator where zone memory is divided

into equally sized blocks for heap allocation. Linear pointer does not check that zone

memory division is complete and non-overlapping, but after a heap is initialized, the

heap’s ownership is managed by the pool using linear pointer. A heap would further

sub-divide its memory for individual object allocation. The sub-division is again not

verified by linear pointer, but the internal data structures for holding the free objects

are. Because the legacy malloc() and free() interface does not preserve linear pointer,

an object’s linear pointer is destroyed before the program acquires it from malloc();

likewise, an object regains its linear pointer after the program releases it back to

free().

4.4 Optimization

Serious performance degradation can result from seemingly benign C++ language

constructs. In the course of optimizing the allocator, a number of such hazards have

been identified. Many of the language constructs causing the hazard are tempting to

use because of the simplicity and the limitations of the malloc() and free() interface.

There is a single entry point for all the program’s memory allocation needs, regardless

of the thread, the locality of the object, and the size class. There is only one singleton

instance of the allocator because there is only one address space. This single entry

point has to dispatch the request to the appropriate heap. The dispatch starts from

a global function call, routes through thread-local context, and finally arrives at the

destination heap according to object size class. Optimizations described in this section

can account for up to 20% performance improvement.

112

Static construction An object declared at the compilation-unit level, whether a

static object or a global one (the only difference is that global objects have an external

linkage), are initialized right after the program is loaded into memory but before the

program starts running, but the order of initialization is undefined in terms of which

compilation unit is initialized first. This often causes problems when a static object

uses another one. As a result, the “construction on first use” idiom emerged [27,

10.15, 10.16], which wraps a static object inside a function like this:
1 class Thing {...};
2

3 Thing& thing() {
4 static Thing the_thing;
5 return the_thing;
6 }

C++ defers the construction of the_thing until thing() is first called. The

actual code generated has to protect each access to thing() with an initialization

guard like this:
1 static bool thing_init = false;
2

3 // Assume memory for the thing is well-aligned.
4 static char memory_for_the_thing[sizeof(Thing)];
5

6 Thing& thing() {
7 if (thing_init)
8 return *(Thing *) memory_for_the_thing;
9 new (memory_for_the_thing) Thing();

10 return *(Thing *) memory_for_the_thing;
11 }

The overhead of the initialization guard adds up when the functional units of the

allocator are broken down into several classes. The “construction on first use” idiom

is still useful in the presence of template instantiation because it is convenient to let

the compiler generate static objects depending on the exact instantiation (e.g. for

metadata allocator synthesis) as long as static object access is outside of the critical

113

path. Components in the critical path would be declared as members of the global

allocator class. The global allocator class is created during shared library initialization

and destroyed during shared library uninitialization.
1 class global_alloc {...};
2

3 static global_alloc *the_alloc = NULL;
4

5 __attribute__((constructor)) void libikai_malloc_init() {
6 void *p = init_malloc(sizeof(global_alloc));
7 the_alloc = new (p) global_alloc;
8 }
9

10 __attribute__((destructor)) void libikai_malloc_fini() {
11 the_alloc->~global_alloc();
12 the_alloc = NULL;
13 }

There is no need for initialization guard when accessing the_alloc because the con-

struction and destruction times of the global allocator is well-defined. This technique

is supported by ELF as well as Mac OS X. Similar technique is available on Windows

by implementing DllMain().

Thread local storage and dynamic linking ELF defines four models for ac-

cessing thread local storage [47]—general dynamic, local dynamic, initial exec, and

local exec—in increasing order of performance at the expense of restriction, namely

whether a function declared in one compilation unit could access the thread-local

variable declared in a different one, and whether the function or the thread local stor-

age could be dynamically loaded. Both general dynamic and local dynamic require

several indirect lookups and address computations before the thread local variable

could be accessed. Local exec, however, is too restrictive, as it requires the alloca-

tor to be statically linked to the executable. Since the memory allocator is made

available to the program as a shared object loaded before the program runs, initial

114

exec is the most appropriate and provides good performance. A symptom of the bad

model choice is that the __tls_get_addr() function gets called an excessive number

of times, or that functions accessing thread local storage are slower than expected.

Although Mac OS X does not support ELF-style thread local storage, the complexity

of pthread_getspecific() is comparable to initial exec [88].

Another issue with dynamic linking is the resolution of symbol, which entails

computing the symbol’s address after load and populating a jump table to point to

the address. For a shared library with many symbols but few of them actually used

by the program, resolving symbols on program load is costly with no benefit, so they

are instead resolved lazily on first use. The method is similar to the “construction on

first use” idiom and requires a stub with initialization guard. On the other hand, the

memory allocator only exposes a few functions, so it makes sense to precompute all

symbols on load. This avoids the initialization guard overhead as well as an additional

indirect branch. During profiling, excessive number of cycles being attributed to

the _dl_runtime_resolve() function indicates performance problem with the lazy

symbol resolution.

Although these issues have grave performance impact, addressing them is delight-

fully simple: just pass the right command line flags when building. For ELF thread

local storage, pass -ftls-model=initial-exec to the compiler; for eager symbol

resolution, pass -l now to the linker.

Indirect branches With dynamic linking, there is always at least one level of indi-

rect branch in order to call a function in a shared library whose symbols are resolved in

the run time. Indirect branches are also prevalent where virtual methods are used as

well as a switch statement with many cases. Indirect branching is a performance haz-

ard because it stalls a processor’s instruction execution pipeline. Modern processors

115

fetches, decodes, executes, and store the results of instructions in multiple stages for

performance. Branching can stall the pipeline because the destination might depend

on the result of prior computation. Conditional branches can be speculatively eval-

uated because there are only two possible branches. With indirect branches, branch

prediction is hard because the destination is unknown. If a processor has a 20 stage

pipeline, indirect branch could cost 20 cycles on a misprediction.

Since there is only a small number of allocation strategies in use, indirect branches

can be replaced by conditional branches during dynamic dispatch. Furthermore, small

objects are favored for being the most likely in branch prediction because mispredic-

tion penalty is greater for them. While dynamic method resolution using virtual

table is one way to achieve polymorphism, it can be replaced by curiously recurring

template pattern [32] which is a compile-time type-based static method resolution

mechanism.

4.5 Benchmark and Results

The memory allocator designed here, given the name of “Libikai,” is compared with

other allocators in terms of performance and memory use. The other allocators are

GNU Glibc allocator, Hoard, JeMalloc, StreamFlow, and TcMalloc. Glibc is based

on PtMalloc2, which is a parallel adaptation of Doug Lea’s allocator. Furthermore,

there are two flavors of Libikai, one that has linearity checks turned on (denoted as

“libikai(”), and one has not. Both flavors were compiled without other assertion

checks. This allows us to see the actual performance difference caused by linearity

checking. The precise versions used for these allocators are listed in Table 4.3. They

were all compiled using GCC 4.3.6 with the exception of Glibc which was compiled

using GCC 4.7.3.

116

Allocator Version
GNU Glibc Ubuntu EGLIBC 2.17-0ubuntu5

Hoard git:4f5b5ab (Aug 5, 2013)
JeMalloc git:0ed518e (Jun 2, 2013)
Libikai git:1acaa1f (Aug 30, 2013)

StreamFlow git:fa2c3c5 (Mar 9, 2013)
TcMalloc git:819a2b0 (Aug 29, 2013)

Table 4.3: Allocator versions used in the benchmark.

The benchmark designed for this purpose is a program that takes an allocation

pattern configuration and mimics the allocation behavior of another program. The

configuration is an object size histogram with lifetime quantile of each object size.

The program runs in a loop. In each cycle, it first determines the desired object size by

sampling the histogram, then its lifetime by interpreting the quantile as a cumulative

distribution function. Once an object is allocated, it is placed into a circular array

holding singly linked lists. The program maintains a cycle counter t which is the

index into this array. Objects with lifetime l is placed into the array index (t + l)

mod n where n is the array size. Objects in the singly linked list at t mod n are

freed at the beginning of cycle t.

There are two variants of this benchmark, one that runs independent allocation

and free over multiple threads (“no exchange”), and one where threads also send the

objects they allocated to any one of the other threads using the same non-blocking

singly linked list insertion as remote free (“exchange”). In the latter variant, the

object’s lifetime is stored as the first word of the object. At each cycle, the thread

would additionally check its receiving list of objects and store them into the array

by their lifetime. This specially crafted benchmark is designed to stress test Hoard,

StreamFlow, and Libikai whose design goal is to make producer-consumer allocation

pattern efficient. Note that this benchmark has no speed-up to speak of. Each thread

117

Threads
Variant Alloc Config 8 16 24 32

mt hoard bestbuddy 17 19 20 20
bestbuddy+1 5 18 20 20

mtnx hoard bestbuddy 8 19 20 20
bestbuddy+1 14 19 20 20

Table 4.4: Error count.

performs the same amount of work, so the amount of work increases proportionally

to the number of threads.

The machine used for the benchmark was an Amazon EC2 virtual machine of

instance type cc2.8xlarge, which provided two 8-core hyper-threaded Intel Xeon E5-

2670 running at 2.60GHz, for a total of 32 virtual CPUs. A total of 58GB memory

was available to use by the virtual machine; it has no swap memory configured. The

machine was running Ubuntu Linux 13.04 at kernel 3.8.0-19-generic. Each test was

run 20 times total. Some of the tests failed, and each failed iteration was retried for

up to three times. Table 4.4 shows the error counts for the particular configuration

and number of threads. Only Hoard resulted in any errors. The values in the table

are the means and standard deviations over the successful runs. Wall-clock time and

user CPU time are measured in seconds. Memory usage is measured in bytes.

4.5.1 Packed Size Classes

We first present the benchmark result against an object size configuration that only

includes every packed heap size classes for our allocator, which are sizes 8 though 128

in multiples of 8. With the exception of Glibc, all the other allocators use the same

headerless packed heap strategy for these object sizes with minor differences in size

classification granularity. Glibc (based on Doug Lea’s allocator) uses segregated free

list for approximated best-fit allocation. Table 4.5 shows the wall-clock time spent

118

running the benchmark, comparing the “no exchange” and the “exchange” variants.

With “no exchange,” Libikai with linearity checks runs from 12% to 37% slower

than with linearity checks turned off, with the disparity increasing as the number of

threads increases. A plausible explanation is hyper-threading. The additional linear-

ity check puts more work on the computation core which is shared every two threads.

As the number of threads increase, the likelihood that two threads contend with the

same core also increases. However, “exchange” is more bottlenecked by the commu-

nication overhead between cores, so the effect of linearity checking is diminished and

even reversed at higher thread counts.

With “no exchange,” Libikai is slower than StreamFlow and TcMalloc but is faster

than Glibc, Hoard and JeMalloc. StreamFlow is the fastest. With “exchange,” Libikai

is the fastest. It is surprising that StreamFlow which implements remote free does not

show a significant edge against TcMalloc which does not. Overall, it is not surprising

to see that “exchange” takes more time than “no exchange” for all allocators. Glibc

and Hoard especially struggle with exchange compared to their own performances

against “no exchange.”

A more interesting picture emerges when considering the utilization which is the

sum of system and user CPU time divided by wall-clock time and the number of

threads, as shown in Figure 4.1. With “no exchange,” except for Glibc whose uti-

lization plummets as the number of threads, all allocators are able to remain highly

utilized, as expected with thread-local heap design. With “exchange,” only Stream-

Flow and Libikai retain high utilization due to remote free. Remote free is only able

to finish sooner due to the increased utilization despite using more CPU time than

other allocators. The user CPU time is shown in Table 4.6.

Table 4.7 compares the maximum resident set size with “no exchange” and “ex-

change.” In our setup, this value is the same as peak memory usage because the

119

Threads
Alloc 1 2 4 8 16 24 32
glibc 0.223 0.230 0.334 0.553 0.845 0.976 1.128
± 0.007 0.008 0.030 0.038 0.072 0.036 0.057

hoard 0.319 0.322 0.340 0.397 0.558 0.699 0.920
± 0.006 0.005 0.006 0.034 0.048 0.034 0.045

jemalloc 0.202 0.201 0.210 0.230 0.321 0.474 0.729
± 0.008 0.007 0.004 0.026 0.017 0.032 0.034

libikai 0.228 0.286 0.319 0.329 0.393 0.485 0.550
± 0.006 0.024 0.009 0.012 0.041 0.021 0.016

libikai(0.258 0.324 0.377 0.391 0.490 0.578 0.756
± 0.008 0.036 0.022 0.013 0.051 0.014 0.043

streamflow 0.225 0.234 0.231 0.233 0.300 0.357 0.409
± 0.006 0.005 0.006 0.003 0.031 0.010 0.016

tcmalloc 0.202 0.202 0.211 0.226 0.285 0.363 0.427
± 0.006 0.007 0.004 0.013 0.027 0.010 0.012

(a) “no exchange”

Threads
Alloc 1 2 4 8 16 24 32
glibc 0.247 0.655 0.962 1.472 3.659 7.689 13.23
± 0.008 0.178 0.038 0.048 0.262 0.475 0.827

hoard 0.343 0.581 1.230 1.541 2.300 4.388 5.923
± 0.005 0.081 0.101 0.192 0.375 0.404 1.418

jemalloc 0.222 0.401 0.659 0.799 1.237 2.196 2.167
± 0.006 0.081 0.016 0.027 0.120 0.096 0.102

libikai 0.249 0.522 0.665 0.857 1.156 1.549 1.443
± 0.006 0.110 0.065 0.016 0.041 0.048 0.062

libikai(0.285 0.562 0.713 0.825 1.078 1.521 1.315
± 0.006 0.104 0.011 0.028 0.068 0.066 0.049

streamflow 0.248 0.556 0.734 0.886 1.206 1.693 1.504
± 0.007 0.103 0.020 0.024 0.067 0.077 0.065

tcmalloc 0.225 0.375 0.600 0.774 1.099 1.635 1.584
± 0.005 0.087 0.076 0.009 0.026 0.045 0.032

(b) “exchange”

Table 4.5: Wall-clock time for packed configuration.

120

1 2 4 8 16 24 32
0.2

0.4

0.6

0.8

1 glibc
hoard

jemalloc
libikai

libikai(
streamflow

tcmalloc

(a) “no exchange”

1 2 4 8 16 24 32

0.2

0.4

0.6

0.8

1 glibc
hoard

jemalloc
libikai

libikai(
streamflow

tcmalloc

(b) “exchange”

Figure 4.1: Utilization for packed configuration.

121

Threads
Alloc 1 2 4 8 16 24 32
glibc 0.219 0.433 1.054 2.357 4.683 6.965 9.472
± 0.005 0.008 0.061 0.100 0.163 0.106 0.373

hoard 0.314 0.627 1.292 2.707 6.247 10.65 16.03
± 0.006 0.008 0.028 0.083 0.605 0.362 1.093

jemalloc 0.199 0.390 0.795 1.627 3.549 6.907 10.48
± 0.008 0.013 0.015 0.063 0.248 0.164 0.173

libikai 0.226 0.560 1.175 2.471 5.507 10.09 16.04
± 0.006 0.043 0.038 0.037 0.090 0.149 0.193

libikai(0.256 0.628 1.362 2.866 6.436 11.71 19.01
± 0.010 0.066 0.036 0.037 0.115 0.125 0.262

streamflow 0.223 0.452 0.888 1.765 3.789 7.084 11.22
± 0.007 0.009 0.020 0.017 0.100 0.165 0.203

tcmalloc 0.201 0.394 0.809 1.666 3.758 7.049 11.02
± 0.006 0.013 0.014 0.036 0.186 0.170 0.134

(a) “no exchange”

Threads
Alloc 1 2 4 8 16 24 32
glibc 0.244 1.274 3.437 8.642 22.58 37.84 53.59
± 0.008 0.349 0.387 0.462 0.349 0.621 0.894

hoard 0.339 1.141 3.043 6.638 15.20 27.57 39.87
± 0.007 0.161 0.085 0.213 0.756 0.402 1.439

jemalloc 0.219 0.790 2.393 5.611 13.83 24.32 30.72
± 0.006 0.161 0.163 0.158 0.115 0.320 0.277

libikai 0.247 1.031 2.283 6.006 15.11 24.58 34.93
± 0.005 0.216 0.338 0.282 0.691 0.245 0.357

libikai(0.283 1.110 2.518 5.883 14.05 24.63 33.04
± 0.006 0.203 0.265 0.326 0.202 0.296 0.530

streamflow 0.245 1.043 2.579 6.177 15.43 26.44 36.02
± 0.007 0.193 0.333 0.426 0.863 0.759 0.402

tcmalloc 0.224 0.731 2.069 5.571 13.59 22.93 29.42
± 0.005 0.169 0.333 0.099 0.130 0.246 0.194

(b) “exchange”

Table 4.6: User CPU time for packed configuration.

122

machine has no swap space. Also, the number of objects allocated and retained

per thread is constant, so total memory usage increases as the number of threads

increases. With “no exchange,” Glibc is the most memory efficient as Doug Lea’s

allocator is reputed to be. All other allocators use similar amounts of memory. With

“exchange,” Glibc experiences a blow up of up to 7 times. Although Hoard’s design

goal is to prevent blow-up with producer-consumer pattern exhibited by “exchange,”

at 5 times blow-up it is clearly ineffective. The most effective memory use is Stream-

Flow and Libikai at less than 2 times blow-up. Memory usages of Libikai with and

without linearity check are statistically indistinguishable.

4.5.2 Lower Best-Fit Size Classes

The benchmark is run against a configuration of object sizes 2b ·k for b ∈ {6, 7, 8} and

k ∈ {4, 5, 6, 7}, as well as 211, which spans the lower best-fit size classes 28 through 211

for our allocator. At these size class, all other allocators still use the same respective

strategy as described previously. This is mainly a benchmark comparing packed

and best-fit strategies. Table 4.8 shows the wall-clock time. Table 4.9 shows the

user CPU time. Best-fit with splay tree operation uses significantly more CPU time

than packed strategy which uses only singly linked lists, although the wall-clock time

continues to be dominated by utilization as shown in Figure 4.2. Splay tree rotation

uses many more pointer moves than singly linked list, so the difference of Libikai with

and without linear checking is larger, between 70% to 130%.

Table 4.10 shows the memory usage. Due to the small number of object sizes in

this configuration, the space savings of best-fit strategy is not apparent. The memory

saving reported in the “exchange” variant is similar to the packed heap size classes,

mostly due to remote-free which allows objects to move freely between threads for

123

Threads
Alloc 1 2 4 8 16 24 32
glibc 3.17M 6.33M 12.6M 25.3M 49.6M 61.1M 75.8M
± 0 0 0 0 1.62M 0.98M 3.47M

hoard 3.35M 6.68M 13.3M 26.6M 53.2M 79.9M 105M
± 0 1.47K 8.44K 21.1K 36.2K 39.5K 1.81M

jemalloc 3.06M 5.91M 11.6M 23.1M 45.9M 68.7M 91.9M
± 0 8.54K 36.5K 50.7K 78.1K 83.9K 895K

libikai 3.41M 6.57M 12.8M 25.1M 49.7M 74.3M 98.8M
± 0 22.3K 40.0K 68.3K 69.8K 111K 112K

libikai(3.46M 6.59M 12.8M 25.2M 49.8M 74.5M 98.8M
± 0 40.0K 36.4K 50.8K 82.5K 116K 135K

streamflow 2.69M 5.61M 11.4M 22.9M 46.0M 69.2M 91.7M
± 3.87K 3.55K 15.4K 71.4K 191K 220K 353K

tcmalloc 2.98M 5.93M 11.9M 23.9M 47.7M 71.4M 95.3M
± 3.58K 10.3K 30.3K 32.5K 59.0K 70.5K 116K

(a) “no exchange”

Threads
Alloc 1 2 4 8 16 24 32
glibc 3.16M 6.88M 25.5M 50.4M 144M 314M 551M
± 0 800K 15.2M 16.7M 11.1M 12.5M 26.4M

hoard 3.36M 7.02M 44.0M 74.4M 152M 375M 513M
± 0 232K 7.81M 24.6M 46.1M 36.0M 133M

jemalloc 3.08M 6.35M 21.1M 37.2M 100M 256M 281M
± 0 115K 11.2M 12.4M 28.8M 26.0M 23.0M

libikai 3.41M 6.60M 30.6M 44.6M 92.0M 218M 155M
± 0 24.5K 12.9M 16.7M 24.4M 14.6M 18.5M

libikai(3.45M 6.63M 23.9M 38.1M 80.9M 201M 120M
± 0 34.2K 12.9M 19.8M 25.6M 21.7M 21.7M

streamflow 2.71M 9.35M 24.2M 43.4M 82.2M 187M 133M
± 2.25K 1.44M 10.5M 14.4M 19.2M 13.9M 12.9M

tcmalloc 3.01M 6.33M 24.5M 30.6M 85.7M 213M 208M
± 7.52K 509K 11.9M 4.82M 10.2M 13.0M 10.1M

(b) “exchange”

Table 4.7: Maximum resident set size for packed configuration.

124

Threads
Alloc 1 2 4 8 16 24 32
glibc 0.320 0.755 2.611 5.038 10.04 14.69 19.87
± 0.007 0.138 0.129 0.112 0.197 0.603 0.434

hoard 1.034 1.061 1.213 1.652 2.427 3.526 5.260
± 0.006 0.014 0.152 0.118 0.231 0.322 0.982

jemalloc 0.246 0.252 0.284 0.326 0.515 0.735 1.225
± 0.006 0.006 0.025 0.030 0.034 0.075 0.239

libikai 0.516 0.669 0.740 0.826 1.031 1.301 1.630
± 0.006 0.057 0.012 0.049 0.079 0.027 0.175

libikai(1.155 1.359 1.515 1.629 1.970 2.473 2.704
± 0.010 0.085 0.044 0.163 0.296 0.084 0.045

streamflow 0.302 0.314 0.333 0.376 0.505 0.625 0.759
± 0.005 0.005 0.007 0.050 0.050 0.027 0.049

tcmalloc 0.223 0.234 0.255 0.306 0.487 0.813 1.113
± 0.002 0.010 0.005 0.024 0.035 0.042 0.117

(a) “no exchange”

Threads
Alloc 1 2 4 8 16 24 32
glibc 0.365 1.879 4.075 9.492 23.94 40.42 58.13
± 0.004 0.411 0.546 1.911 3.039 6.526 4.369

hoard 1.046 1.428 2.233 2.833 4.220 7.748 7.679
± 0.007 0.006 0.248 0.140 0.461 0.506 0.482

jemalloc 0.275 0.502 0.847 1.125 1.848 3.633 3.718
± 0.005 0.067 0.188 0.192 0.336 0.187 0.218

libikai 0.554 0.804 1.072 1.219 1.608 2.046 1.962
± 0.006 0.134 0.021 0.015 0.136 0.042 0.075

libikai(1.186 1.526 1.764 1.948 2.282 2.989 3.086
± 0.007 0.126 0.021 0.100 0.192 0.048 0.089

streamflow 0.338 0.532 0.715 1.035 1.386 2.155 1.669
± 0.008 0.117 0.187 0.092 0.146 0.153 0.053

tcmalloc 0.250 0.441 0.723 0.868 1.343 2.145 2.080
± 0.005 0.083 0.055 0.053 0.076 0.130 0.118

(b) “exchange”

Table 4.8: Wall-clock time for lower best-fit configuration.

125

Threads
Alloc 1 2 4 8 16 24 32
glibc 0.294 1.028 4.017 8.714 17.97 26.58 34.70
± 0.007 0.114 0.261 0.154 0.321 0.460 0.654

hoard 0.949 1.950 4.195 9.257 19.57 34.02 54.46
± 0.018 0.046 0.267 0.257 0.978 0.896 1.010

jemalloc 0.222 0.448 0.972 2.074 4.815 9.381 13.91
± 0.008 0.018 0.053 0.078 0.238 0.364 0.513

libikai 0.497 1.293 2.797 6.258 15.16 27.39 48.65
± 0.007 0.115 0.062 0.096 0.185 0.412 5.433

libikai(1.135 2.662 5.828 12.51 27.82 51.91 82.86
± 0.013 0.167 0.061 0.289 0.527 1.376 0.950

streamflow 0.281 0.563 1.152 2.433 5.450 9.983 16.56
± 0.006 0.011 0.025 0.164 0.484 0.225 0.341

tcmalloc 0.205 0.425 0.904 2.041 5.042 10.57 17.38
± 0.007 0.022 0.023 0.060 0.156 0.251 0.604

(a) “no exchange”

Threads
Alloc 1 2 4 8 16 24 32
glibc 0.334 1.246 2.492 6.981 23.23 54.24 93.40
± 0.009 0.292 0.609 0.993 1.679 2.466 2.975

hoard 0.971 2.473 6.855 16.11 34.39 59.49 87.15
± 0.015 0.033 0.673 0.379 0.852 1.363 0.799

jemalloc 0.250 0.950 2.407 5.934 14.64 25.73 33.82
± 0.008 0.139 0.222 0.199 0.189 0.288 0.316

libikai 0.533 1.559 4.019 9.199 22.23 35.46 57.30
± 0.007 0.267 0.161 0.093 0.104 0.346 1.617

libikai(1.164 3.007 6.740 14.72 32.82 55.67 92.87
± 0.012 0.249 0.179 0.093 0.177 0.805 1.443

streamflow 0.320 0.939 2.285 5.812 15.45 27.17 37.25
± 0.009 0.208 0.453 0.562 0.175 0.343 0.442

tcmalloc 0.232 0.838 2.393 5.718 14.39 25.98 35.33
± 0.008 0.166 0.167 0.167 0.126 0.560 0.637

(b) “exchange”

Table 4.9: User CPU time for lower best-fit configuration.

126

1 2 4 8 16 24 32
0

0.2

0.4

0.6

0.8

1 glibc
hoard

jemalloc
libikai

libikai(
streamflow

tcmalloc

(a) “no exchange”

1 2 4 8 16 24 32

0.2

0.4

0.6

0.8

1 glibc
hoard

jemalloc
libikai

libikai(
streamflow

tcmalloc

(b) “exchange”

Figure 4.2: Utilization for lower best-fit configuration.

127

better reuse.

4.5.3 Upper Best-Fit Size Classes

At object sizes starting from 212, Hoard would allocate them from mmap(). JeMal-

loc and StreamFlow starts allocating objects 212 and larger using a binary buddy

algorithm in powers of two pages. StreamFlow also stopped using remote free; each

allocation and deallocation also involves modifying the global BIBOP (big bag of

pages) map. TcMalloc still uses packed heap with coarser spacing for size classes up

to 32K (it has a total of 170 such size classes). For larger sizes it uses a singly linked

list of page spans. There is no change in the allocation strategy of Glibc (based Doug

Lea’s allocator); it still uses binned free list with approximated best-fit allocation.

This benchmark tests against object sizes 212 to 215 in powers of two.

The performance readily reflects the differences of implementation strategy. Table

4.11 shows the wall-clock time. StreamFlow becomes even slower than Glibc at some

of the higher thread counts. JeMalloc also takes a significant hit in performance

penalty. Using the same best-fit strategy, Libikai is now faster than these allocators,

although it is still no match for TcMalloc whose strategy proves to be the most

resilient. Hoard begins to experience segmentation fault at 8 threads or more.

Utilization continues to dominate wall-clock time, as seen in Figure 4.3. User CPU

time in Table 4.12 reveals that best-fit with remote-free actually uses significantly

more CPU time than JeMalloc and TcMalloc. Libikai is only able to compensate by

having higher utilization.

128

Threads
Alloc 1 2 4 8 16 24 32
glibc 30.9M 61.9M 123M 246M 466M 646M 806M
± 0 0 0 117K 5.13M 8.20M 7.06M

hoard 37.1M 74.1M 147M 295M 590M 884M 1.15G
± 0 93.4K 233K 223K 676K 500K 8.05M

jemalloc 31.7M 63.3M 126M 252M 506M 758M 0.99G
± 0 4.73K 63.4K 136K 474K 565K 504K

libikai 37.1M 72.9M 144M 287M 571M 853M 1.11G
± 0 250K 461K 623K 1.04M 1.31M 1.48M

libikai(36.5M 72.8M 144M 287M 571M 851M 1.11G
± 0 215K 454K 497K 873K 1.03M 1.23M

streamflow 35.4M 70.5M 141M 283M 567M 851M 1.11G
± 3.07K 107K 99.6K 328K 505K 1.02M 870K

tcmalloc 32.0M 63.5M 126M 253M 505M 754M 0.98G
± 0 55.8K 100K 147K 346K 328K 319K

(a) “no exchange”

Threads
Alloc 1 2 4 8 16 24 32
glibc 30.9M 216M 559M 1.39G 2.09G 2.25G 2.25G
± 0 100M 326M 519M 700M 681M 222M

hoard 37.1M 74.1M 220M 338M 805M 2.35G 1.20G
± 0 139K 84.2M 64.6M 250M 129M 73.9M

jemalloc 31.8M 65.9M 347M 633M 1.36G 3.62G 3.71G
± 0 1.91M 241M 299M 483M 291M 340M

libikai 37.0M 72.9M 165M 292M 721M 2.02G 1.11G
± 0 275K 53.0M 18.6M 244M 79.6M 1.08M

libikai(37.0M 72.8M 149M 303M 683M 2.07G 1.11G
± 0 168K 8.92M 71.9M 222M 42.4M 975K

streamflow 35.4M 108M 270M 727M 1.14G 2.64G 1.37G
± 3.33K 20.8M 150M 273M 329M 213M 62.5M

tcmalloc 32.0M 65.3M 213M 363M 915M 2.04G 1.33G
± 3.58K 4.29M 118M 144M 181M 155M 178M

(b) “exchange”

Table 4.10: Maximum resident set size for lower best-fit configuration.

129

Threads
Alloc 1 2 4 8 16 24 32
glibc 0.638 2.031 7.971 17.80 38.42 63.50 91.60
± 0.005 0.387 0.443 0.512 0.847 1.695 3.269

hoard 1.446 3.274 6.625 14.24∗ 33.34∗ - -
± 0.006 0.296 0.276 0.245∗ 0.000∗ - -

jemalloc 0.637 0.871 1.230 2.859 11.24 23.65 38.11
± 0.007 0.012 0.023 0.179 0.605 0.675 1.219

libikai 0.531 0.666 0.889 1.463 5.221 12.04 25.38
± 0.009 0.019 0.013 0.026 0.146 0.253 0.513

libikai(0.809 0.990 1.233 1.676 6.124 14.95 30.27
± 0.007 0.018 0.089 0.039 0.163 0.276 0.452

streamflow 0.504 0.970 2.872 11.61 45.67 99.54 181.9
± 0.006 0.225 0.485 0.813 1.324 1.499 3.966

tcmalloc 0.377 0.475 0.656 1.414 3.305 5.216 8.189
± 0.007 0.006 0.021 0.154 0.118 0.122 0.173

(a) “no exchange”

Threads
Alloc 1 2 4 8 16 24 32
glibc 0.693 3.577 8.455 29.69 76.84 148.2 241.7
± 0.014 0.795 1.729 4.006 14.25 19.76 17.54

hoard 1.444 3.739 7.905 13.65∗ 60.34∗ - -
± 0.014 0.358 2.640 0.071∗ 0.000∗ - -

jemalloc 0.666 1.360 7.553 17.73 45.67 71.58 100.4
± 0.007 0.115 1.213 3.567 7.434 13.44 10.77

libikai 0.572 0.878 1.293 1.798 5.051 10.65 22.83
± 0.006 0.081 0.215 0.274 0.252 0.426 0.530

libikai(0.840 1.139 1.513 1.951 6.355 13.51 27.36
± 0.007 0.079 0.088 0.242 0.417 0.558 0.760

streamflow 0.534 0.964 3.356 13.53 50.61 112.0 199.7
± 0.005 0.158 1.335 0.917 1.118 2.075 3.880

tcmalloc 0.401 0.711 1.363 2.259 5.112 9.189 8.864
± 0.007 0.079 0.368 0.497 0.627 0.904 0.326

(b) “exchange”

Table 4.11: Wall-clock time for upper best-fit configuration.

130

1 2 4 8 16 24 32
0

0.2

0.4

0.6

0.8

1 glibc
hoard

jemalloc
libikai

libikai(
streamflow

tcmalloc

(a) “no exchange”

1 2 4 8 16 24 32
0

0.2

0.4

0.6

0.8

1 glibc
hoard

jemalloc
libikai

libikai(
streamflow

tcmalloc

(b) “exchange”

Figure 4.3: Utilization for upper best-fit configuration.

131

Threads
Alloc 1 2 4 8 16 24 32
glibc 0.395 1.800 9.241 23.15 51.52 76.82 96.82
± 0.020 0.183 0.604 0.679 2.240 1.662 2.256

hoard 1.042 4.320 8.920 14.52∗ 30.83∗ - -
± 0.034 0.127 0.282 0.530∗ 0.000∗ - -

jemalloc 0.533 1.214 2.592 5.408 12.92 24.69 37.15
± 0.017 0.037 0.088 0.221 0.289 0.290 0.681

libikai 0.464 1.188 3.204 10.90 78.82 268.7 780.5
± 0.016 0.038 0.082 0.196 3.694 5.731 13.53

libikai(0.736 1.836 4.474 12.49 91.30 333.7 930.4
± 0.010 0.038 0.152 0.493 3.379 6.071 14.14

streamflow 0.426 1.738 10.46 88.54 705.7 2306 5631
± 0.012 0.443 1.902 7.003 26.57 48.76 149.3

tcmalloc 0.313 0.818 2.213 6.650 16.86 28.25 40.15
± 0.012 0.017 0.059 0.315 0.463 0.440 0.646

(a) “no exchange”

Threads
Alloc 1 2 4 8 16 24 32
glibc 0.436 1.184 2.929 11.28 40.82 103.7 188.9
± 0.023 0.381 0.956 1.528 4.772 9.539 8.887

hoard 1.037 4.858 10.52 24.97∗ 38.44∗ - -
± 0.030 0.278 0.269 2.492∗ 0.000∗ - -

jemalloc 0.563 1.805 7.442 20.70 62.10 104.3 138.5
± 0.013 0.113 0.732 3.805 8.625 14.96 8.764

libikai 0.499 1.604 4.271 12.31 63.81 186.6 673.4
± 0.011 0.163 0.280 0.465 6.516 5.996 23.74

libikai(0.765 2.131 5.460 13.67 76.26 240.6 785.9
± 0.012 0.159 0.134 0.238 4.637 12.20 24.13

streamflow 0.456 1.742 10.61 94.57 701.6 2336 5634
± 0.012 0.318 2.918 5.849 20.74 62.89 176.4

tcmalloc 0.337 1.283 3.562 10.17 27.57 48.07 60.91
± 0.011 0.130 0.058 0.591 0.972 1.857 1.140

(b) “exchange”

Table 4.12: User CPU time for upper best-fit configuration.

132

4.5.4 Upper Best-Fit Plus One

This benchmark tests against object sizes 2k + 1 for k ∈ {12, . . . , 15}. These are

the sizes of the previous subsection plus one. These sizes are chosen to contrast the

differences of best-fit and buddy allocation strategy in terms of memory use. Since

buddy allocation rounds up objects to power-of-two sizes, 2k + 1 would double the

apparent memory usage in theory.

With “no exchange,” the most notable increase in memory usage can be seen for

JeMalloc. Even so, the amount merely increased by ~28%. Adding one to the size

actually decreased the memory used by StreamFlow. It turns out that StreamFlow

reserves parts of the object memory to store size information, so allocating 2k sized

objects already incurred the penalty, but that does not explain why adding one to

object sizes makes memory usage lower. A plausible explanation is that at these

object sizes, some of the memory pages have never been touched by the benchmark,

so the operating system never had to allocate physical memory for them. This may

also explain why TcMalloc memory usage is the lowest. There are no significant

differences in the memory usage between 2k and 2k +1 sizes for Glibc, Hoard, Libikai,

and TcMalloc respectively when compared to themselves.

With “exchange,” memory usage is a lot less predictable. The major factor being

the ability to quickly move and reuse an object freed by a different thread. This

may explain the the blow-up of memory usage with 24 threads followed by a decline

with 32 threads. With 24 threads, some threads may be starved because of the

hyper-threading, so objects accumulate in these threads’ holding area more. With 32

threads, the starvation is again balanced equally among all threads.

133

Threads
Alloc 1 2 4 8 16 24 32
glibc 376M 754M 1.43G 2.80G 5.61G 8.10G 11.6G
± 0 589K 26.1M 85.2M 211M 74.3M 43.2M

hoard 122M 243M 486M 1.13G∗ 2.51G∗ - -
± 0 297K 511K 3.19M∗ 0∗ - -

jemalloc 127M 255M 509M 1.00G 1.99G 2.96G 3.97G
± 0 154K 672K 1.17M 2.74M 5.13M 18.2M

libikai 147M 291M 573M 1.11G 2.21G 3.31G 4.42G
± 0 1.78M 812K 902K 2.16M 1.99M 2.44M

libikai(151M 290M 573M 1.11G 2.22G 3.31G 4.42G
± 0 1.78M 1.02M 847K 2.01M 2.80M 3.57M

streamflow 146M 285M 565M 1.11G 2.21G 3.33G 4.42G
± 3.30K 2.25M 9.13M 8.79M 14.0M 13.4M 22.2M

tcmalloc 123M 246M 492M 979M 1.90G 2.85G 3.80G
± 7.83K 119K 341K 632K 1.17M 979K 1.18M

(a) Upper best-fit.

Threads
Alloc 1 2 4 8 16 24 32
glibc 376M 754M 1.43G 2.79G 5.65G 8.10G 11.6G
± 0 626K 32.7M 113M 222M 73.5M 46.7M

hoard 122M 243M 516M 1.26G∗ 2.77G∗ - -
± 0 434K 2.18M 7.28M∗ 0∗ - -

jemalloc 163M 328M 650M 1.27G 2.52G 3.63G 5.07G
± 0 584K 5.74M 6.95M 24.3M 10.9M 9.64M

libikai 150M 291M 573M 1.11G 2.22G 3.32G 4.42G
± 0 1.28M 0.99M 1.15M 2.23M 2.33M 4.25M

libikai(149M 290M 573M 1.11G 2.22G 3.32G 4.42G
± 0 1.27M 1.24M 1.47M 1.92M 2.22M 2.26M

streamflow 127M 252M 503M 0.98G 1.96G 2.94G 3.92G
± 3.25K 1.32M 1.72M 4.66M 6.42M 4.85M 10.5M

tcmalloc 123M 246M 491M 978M 1.90G 2.85G 3.79G
± 7.83K 86.2K 312K 598K 1.16M 1.00M 574K

(b) Upper best-fit plus one.

Table 4.13: Maximum resident set sizes, “no exchange.”

134

Threads
Alloc 1 2 4 8 16 24 32
glibc 375M 1.05G 2.60G 6.79G 10.3G 15.2G 18.7G
± 0 346M 1.00G 1.53G 2.20G 2.10G 962M

hoard 122M 245M 608M 1.16G∗ 4.98G∗ - -
± 0 773K 380M 21.5M∗ 0∗ - -

jemalloc 127M 260M 2.24G 4.88G 12.1G 16.6G 21.6G
± 0 2.16M 354M 1.19G 2.46G 5.02G 2.91G

libikai 147M 291M 788M 1.42G 5.37G 15.6G 5.96G
± 0 1.09M 420M 802M 2.03G 963M 1.44G

libikai(148M 291M 637M 1.32G 7.67G 16.4G 10.3G
± 0 1.65M 156M 513M 982M 767M 878M

streamflow 146M 332M 1.42G 3.64G 10.4G 16.5G 21.3G
± 3.07K 3.06M 960M 1.49G 2.77G 1.77G 3.05G

tcmalloc 123M 251M 990M 1.68G 3.64G 5.89G 3.83G
± 8.04K 19.1M 557M 723M 947M 495M 36.0M

(a) Upper best-fit.

Threads
Alloc 1 2 4 8 16 24 32
glibc 375M 0.99G 2.66G 6.95G 10.3G 14.4G 18.3G
± 0 194M 932M 1.35G 1.90G 2.44G 627M

hoard 121M 247M 549M 1.40G∗ 5.31G∗ - -
± 0 6.02M 40.1M 419M∗ 172M∗ - -

jemalloc 163M 334M 1.08G 3.21G 14.4G 23.1G 28.3G
± 0 9.04M 654M 919M 1.21G 2.99G 4.69G

libikai 147M 291M 1.04G 1.41G 4.54G 15.6G 6.04G
± 0 1.70M 523M 432M 1.42G 823M 1.42G

libikai(148M 290M 751M 1.18G 7.85G 16.3G 10.1G
± 0 1.21M 278M 125M 1.21G 762M 1.01G

streamflow 126M 307M 2.17G 4.61G 10.3G 14.0G 19.0G
± 2.87K 1.68M 1.03G 1.37G 2.63G 1.92G 2.62G

tcmalloc 123M 247M 878M 1.66G 3.94G 6.17G 3.92G
± 7.11K 126K 507M 689M 903M 463M 443M

(b) Upper best-fit plus one.

Table 4.14: Maximum resident set sizes, “exchange.”

135

4.6 Conclusion

A common theme that recurred in the results across all size classes is that, in a

multi-threaded program, user CPU time is less of a factor for an allocator to be fast.

Utilization dominates wall-clock time. On the one hand, in data center applications

where performance per watt is significant, it may still be preferable to have lower

user CPU time even when overall progress is slower due to lower utilization. On the

other hand, higher user CPU time does not necessarily mean the CPU is using more

power, only that some of the fine-grained synchronization stall on the memory bus is

now accounted as user CPU time. The experiments here did not measure the power

consumption, so this may be a subject for future study.

Also a common theme is that remote free is able to lower memory usage by

facilitating object movement across threads, which allows them to be better reused.

One concern is that remote-free might cause increased contention in the memory

bus when a cache line ping-pongs between different remote threads. Although the

thread that owns the heap does not examine remote-freed objects until the heap

is exhausted, the increased contention decreases overall memory access throughput.

This might explain the significant blow-up of user CPU time of Libikai.

In terms of memory allocation strategy, the benchmark shows that best-fit can be

better than buddy allocator in terms of both performance and memory usage. How-

ever, the best performance and memory usage is still achieved by packed strategy—

which is O(1) with a small amount of internal fragmentation—even for large object

sizes. This is why TcMalloc consistently outperforms all allocators across all size

classes.

Finally, the packed size class benchmark shows that an allocator implemented

using linear pointer can perform comparably or even outperform non-linear imple-

136

mentations of the same strategy when linear checking is disabled. This is expected

because of the erasure property of linear pointers. On the other hand, linear checking

causes between 30% to 200% overhead. This is a significant improvement over dy-

namic binary instrumentation techniques that can experience 2× to 10× slow down.

Although it is not clear how much time the authors of the other memory allocators

spent debugging memory leaks, no time was spent in debugging memory leaks at all

when implementing Libikai. All potential problems were caught during unit testing

with linear checking turned on.

Chapter 5

Linearity and Concurrency

Multiprocessor computers have become ubiquitous because the hardware has hit a

physical limit in how fast it can go. In order to continue to deliver value to the

customers, chip makers nowadays design a processor as a package of multiple sub-

processors, each of which can run a thread of computation in parallel, as a multicore

processor. A computer can also contain multiple processors that are multicore, and

each processor controls its own section of the main memory. Processors can access

each other’s main memory through a high speed interconnect, so to the program all

memory is shared. However, it still requires programs to be adapted to take advantage

of this parallel, shared memory architecture. In order to serve these programs, the

underlying memory management must ensure that it scales at least as well as the

program does. Programs and the memory allocator subsystem must be able to use

linear pointers concurrently and continue to enjoy safety and efficiency.

To facilitate parallel programs using linear pointers, linear pointer is extended

with atomic semantics: first a simple swap with one volatile and one non-volatile

linear pointer, then also a transactional swap with two volatile linear pointers. A

volatile pointer is a shared state that can be concurrently observed and mutated by

138

more than one thread. The simple swap is a hardware intrinsic, and the transactional

swap is a complex operation that has to be implemented as a semi-blocking algo-

rithm. Although other atomic hardware intrinsics exist, swapping is chosen as the

fundamental atomic operation because it preserves linear ownership. Two algorithms

using linear atomic pointers are shown as examples using linear atomic pointers: a

double-ended queue suitable for work stealing scheduling, and singly linked list in-

sertion. Although only a casual proof of correctness is given, towards the end of the

chapter we will discuss what work is required before a formal system can reason about

concurrent algorithms, and propose directions for future work.

5.1 A Historical Perspective

Henry Baker, one of many who are inspired by Linear Logic and recognize its useful-

ness outside of type-theoretical setting, suggested that linear objects avoid synchro-

nization in a concurrent system because there is no sharing [12]. However, concurrent

systems are only interesting as long as different threads of computation are able to

communicate and share results with one another. At a higher level, it may seem that

it is possible to share results in a linear manner, when an object is merely passed

from one thread to another along with the object’s ownership. Going deeper to the

implementation level where the mechanism of result passing is concerned, it would

become apparent that even signaling the availability of the result itself requires syn-

chronization, let alone passing the result. The reason is simple. If we consider two

threads to have a producer-consumer relationship, the supplying of the result from a

producer and the demanding of the result for the consumer are asynchronous events.

What Baker means in the context of linear objects and synchronization is not that

synchronization can be avoided when passing ownership from one thread to another,

139

but that a thread, as long as it retains ownership of an object, can expect to enjoy

exclusive access to it; however, this is only true in a strict linear system that disallows

controlled sharing. With controlled sharing such as reference counting or idioms for

borrowing as described in Section 2.7, an object’s state may be leaked to any thread

that happens to have a shared reference to the object. Exclusiveness of access is

particularly important for shared-memory parallel computers where communication

by shared state is the normal way concurrent computations are carried out. Linearity

narrows the sharing down to the mechanism used for object passing, which makes

it feasible to reason about the correctness of a concurrent program. One only needs

to show that the program obeys linearity, and that the mechanism for passing linear

objects is correct. This is preferable to having to prove that arbitrary interleaving

of concurrent program state transitions with multiple threads all yield well-defined

results.

Assuming exclusive access to an object also enables many compiler optimization

that could make the program more efficient by reducing the number of memory access

or reordering them. If an object is volatile—meaning it could be mutated outside the

current thread of computation—then such optimizations could result in incorrect

behavior. Furthermore, if an object is indeed used for sharing states between threads

of computation, then compiler optimization techniques that reorder memory access

could result in undefined object states being accidentally shared across threads.

Depending on the abstraction presented to the programmer, linear object passing

can be done explicitly via a shared queue data structure, or implicitly by having a

compiler transform a program with parallel spawn-and-sync semantics to pass ob-

jects using a shared queue under the hood. Although the queue itself is shared, an

interesting question is how much linearity can be preserved by the implementation of

queue insertion and removal operations.

140

5.2 Hardware Intrinsics

All concurrent algorithms assume that the hardware provides atomic operations at

some lower level. An atomic operation is indivisible, in the sense that it always exe-

cutes completely before its side-effects, such as changing value of a memory location,

may be observed from another process. In the case of atomic operation on a machine

word that consists of multiple bytes, the modification is either observed on all the

bytes or none of the bytes.

It is possible to write a concurrent algorithm with minimal hardware requirement,

assuming the hardware provides only atomic reads and writes for machine words;

some examples are Dijkstra’s original solution to the mutual exclusion problem [44]

and Lamport’s bakery solution [81]. In practice, computer hardware also provides

primitives for atomic unconditional and conditional exchange. An unconditional ex-

change swaps the value of a register and a memory location. A conditional exchange,

also known as “compare and swap,” only happens if the memory location contains

some expected value. Compare-and-swap was introduced in 1974 as part of IBM

System/370 instruction set [89], and has since been made available in almost all

hardware.

Having unconditional and conditional exchange drastically simplifies concurrent

algorithms. We can use the number of shared states required to achieve mutual ex-

clusion as a measurement of complexity. Mutual exclusion is the problem of ensuring

that, among the concurrent processes, at most one process is allowed to be in the

critical section, while others may run in the remaining section. Other processes at-

tempting to enter the critical section while a process is already inside all have to wait

for that process to exit.

It was shown by James Burns and Nancy Lynch in 1980 that 2N states, where

141

N is the number of concurrent processes to be determined in advance, is required

and sufficient for an asymmetric mutual exclusion algorithm [22]. The algorithm is

asymmetric because it gives lowered numbered processes higher priority in entering

the critical section. A symmetric algorithm, on the other hand, provides equal oppor-

tunity for all processes. For the number of shared states for symmetric algorithms,

Lamport’s bakery algorithm in 1974 requires 2N × NN states for using a boolean

array of N variables as well as an integer array of N variables. Dijkstra’s original

solution in 1965 requires N × 3N states for using one integer and a tri-state array

of N variables expressed as two boolean arrays. In 1981, Burns simplified Dijkstra’s

algorithm to require only N × 2N states [23]. It is not known whether it is possible

to write a symmetric algorithm with fewer shared states.

In comparison, a spinlock using unconditional exchange requires just one variable

with 2 states, for an arbitrary number of processes that need not be known in advance.

The complexity difference also reflects roughly in the code itself. An example

implementation of Burns’ simplified Dijkstra algorithm is shown below.

Listing 5.1: Burns’ simplified Dijkstra algorithm.
1 template<size_t N>
2 class burns_dijkstra_mutex {
3 private:
4 volatile size_t turn;
5 volatile bool flag[N];
6

7 public:
8 enum { size = N };
9

10 burns_dijkstra_mutex() throw()
11 : turn(0), flag() {}
12

13 void acquire(size_t i) volatile throw() {
14 l0:
15 flag[i] = true;
16 turn = i;

142

17

18 l1:
19 if (turn != i) {
20 flag[i] = false;
21 for (size_t j = 0; j < N; ++j)
22 if (j != i && flag[j]) goto l1;
23 goto l0;
24 } else {
25 flag[i] = true;
26 l2:
27 if (turn != i) goto l1;
28 for (size_t j = 0; j < N; ++j)
29 if (j != i && flag[j]) goto l2;
30 }
31 }
32

33 void release(size_t i) volatile throw() {
34 flag[i] = false;
35 }
36 };

The methods acquire() and release() take an argument that is the process iden-

tifier number of the caller. The identifier has to be unique, so there must have been

some way to pre-assign numeric identifiers to processes before they run. The identifier

is used for each process to signal its intent to enter critical section using a boolean

array, so the identifier has to be less than the number of processes. A process only

enters the critical section if it maintains its turn and that no other processes express

the intent to enter. A process that fails to maintain its turn would withdraw the

intent, allowing the process indicated by the turn to proceed into the critical section.

An example spin lock implementation would look like this.

Listing 5.2: Spinlock.
1 class spinlock {
2 private:
3 volatile bool state;
4

5 public:

143

6 spinlock() throw()
7 : state(true) {}
8

9 void acquire() volatile throw() {
10 while (true) {
11 if (atomic_exchange_acq(&state, false))
12 break;
13 }
14 }
15

16 void release() volatile throw() {
17 atomic_exchange_rel(&state, true);
18 }
19 };

The methods acquire() and release() no longer require process identifier num-

ber as an argument. This spin lock could support an unbounded number of processes

with just two states: “true” indicates availability of lock, and “false” indicates the

lock is unavailable. The spinlock repeatedly tries to acquire the lock by writing false

to the state, but if true is returned from the old state, that means it has swapped

out the “available” bit of the lock, so it should return. The release function simply

writes the true value back. Here, an assignment would work just as well, but observe

there is a symmetry in the acquire and release; that is, if true represents the linear

resource of the lock, then it can be acquired and released both using the same atomic

exchange operation.

The code in this chapter uses atomic macros defined in <atomic.h> from GNU C

Library (GLIBC) [1], which provides machine-specific definitions of the conditional

and unconditional exchange operations with a machine-independent interface.

• The atomic_exchange_*(mem, newval) macros unconditionally write newval

to mem, which is the memory address of the shared variable, and the macro

evaluates to the old value of the shared variable.

144

• The atomic_compare_and_exchange_bool_*(mem, newval, oldval) macros

conditionally write newval to the shared variable at memory address mem if

the current value of the variable is oldval. The macro evaluates to 0 if the

condition holds and the exchange was made, and to 1 otherwise.

Each macro has two variants, *_acq and *_rel, and they differ in where the memory

barrier is placed: _acq places memory barrier after the exchange, and _rel places

memory barrier before the exchange. Memory barrier is sometimes necessary for

hardware that normally reorders memory reads and writes to maximize processor

pipeline. Memory barrier prevents the reordering from taking place across the barrier,

and in the case of spin locks, ensures that memory access within the critical section

does not interleave with memory access in the remaining section. The distinction of

where the memory barrier is placed is less important for a non-blocking data structure

where the data structure can be safely manipulated simultaneously by all concurrent

processes, without requiring the entering of critical section.

If a machine does not have a primitive for unconditional exchange, which is rare,

it can be emulated using compare-and-swap as follows.

Listing 5.3: Emulating unconditional exchange using compare-and-swap.
1 template<typename Tp>
2 Tp atomic_exchange(Tp *mem, Tp newval) {
3 Tp oldval;
4 do {
5 oldval = *mem;
6 } while(atomic_compare_and_exchange_bool(mem, newval, oldval) != 0);
7 return oldval;
8 }

Although this emulation is inefficient compared to the hardware primitive, this il-

lustrates how compare-and-swap is used when there is already a copy of some old,

expected value of the memory location. This has ramification if we were to impose

145

linearity on values to be conditionally exchanged.

5.3 Linear Atomic Value

A linear atomic value can be seen as a generalization of the spinlock state. The

state now carries a value whose linear ownership can be exchanged from one process

to another, and it may be operated upon using both unconditional and conditional

exchanges. The spinlock can be seen as a special case of linear atomic value that is

a boolean, where boolean “true” indicates availability of some resource, and boolean

“false” is the nil value that can be arbitrarily introduced and eliminated.

While unconditionally exchanging linear values is straightforward, there is an im-

mediate challenge formulating conditional exchange for linear values. Recall that

conditional exchange requires that we already have a copy of the expected old value

at the memory location. This copy obviously is an alias of the value in memory which

can only be obtained by controlled sharing. To prevent abuse, this value could have

a type that is only useful for the purpose of compare-and-swap. For example, if the

linear value is a linear pointer to some object, then the expected value would simply

be a void * so that it may not be dereferenced by accident.

The linear_atomic_base class is an add-on to a linear_base that supports

atomic conditional and unconditional exchange operations. Some of its methods are

decorated volatile only to signify the fact that these methods assume that the linear

atomic value could be changed by a different thread of computation, so the compiler

does not optimize away memory read. It is important to note that the volatile

decoration does not make the method or the memory access therein atomic.

Listing 5.4: Linear atomic base.
1 template<
2 class Self /* implements has_value<?v> */,

146

3 class Traits, typename Expect>
4 class linear_atomic_base {
5 private:
6 SELF_TYPE_DECL(Self);
7 typedef typename Traits::value_type value_type;

This class provides value access functions expect(), reset() and release() but

does not implement the actual storage of value. The value storage is assumed to be

provided by the value() method from subclass Self (used as the curiously recurring

template pattern [32]) which returns the lvalue reference to the value storage. The

volatile expect() method returns a non-linear alias to the linear atomic value. A

volatile release() allows elimination of a linear value atomically.
8 public:
9 typedef Expect expect_type;

10

11 expect_type expect() const volatile throw() {
12 return static_cast<expect_type>(self()->value());
13 }
14

15 value_type release() volatile throw() {
16 return atomic_exchange_rel(&self()->value(), Traits::nil);
17 }

The conditional exchange operation cswap() exchanges the linear atomic value with

another linear atomic value if the current value is the same as the expected value. It

returns true if the exchange happened, and false if not. The unconditional exchange

operation swap() simply exchanges two linear atomic values. Both operations are

made atomic using the GLIBC macros.
18 bool cswap(self_type& that, expect_type expect) volatile throw() {
19 value_type old_val = static_cast<value_type>(expect);
20 if (atomic_compare_and_exchange_bool_rel(
21 &self()->value(), that.value(), old_val) == 0) {
22 that.value() = old_val;
23 return true;
24 }
25 return false;

147

26 }
27

28 void swap(self_type& that) volatile throw() {
29 value_type old_val = atomic_exchange_rel(&self()->value(), that.value());
30 that.value() = old_val;
31 }

And this concludes the linear_atomic_base class.
32 };

As an example, linear_atomic_ptr can be built from linear_ptr and linear_atomic_base

as follows. It uses void * for the type of expected value so that an expected value

alias could not be dereferenced to access the object.

Listing 5.5: Linear atomic pointer.
1 template<typename Tp, class Traits = value_traits<Tp *> >
2 class linear_atomic_ptr /* implements atomic_pointer<Tp> */
3 : public linear_ptr<Tp, Traits>,
4 public linear_atomic_base<linear_atomic_ptr<Tp, Traits>, Traits, void *> {
5 public:
6 // Value constructor, reference constructor, move constructor, value
7 // assignment, reference assignment.
8 };

For brevity, the required constructors and assignment operator overloading are omit-

ted. This class must also inherit the reset() and release() methods from both

base classes in order to avoid ambiguity.

A linear_atomic_chroma_ptr can be built similarly, but using uintptr_t for

the expected value.

Listing 5.6: Linear atomic chromatic pointer.
1 template<typename Tp, typename Cp, unsigned int bits = 2u>
2 class linear_atomic_chroma_ptr /* implements atomic_pointer<Tp> */
3 : public linear_chroma_ptr<Tp, Cp, bits>,
4 public linear_atomic_base<linear_atomic_chroma_ptr<Tp, Cp, bits>,
5 value_traits<uintptr_t>, uintptr_t> {
6 public:
7 // Value constructor, reference constructor, move constructor, value

148

8 // assignment, reference assignment.
9 };

Linear atomic value can be immediately used as a spinlock. It is easy to see that

the spinlock acquire() function in Listing 5.2 can be written in terms of swap().

It would attempt to swap the lock with a nil value and check if a non-nil value

is swapped out, which acquires the lock. The release() function would swap() the

linear resource back into the lock which we know would be nil. This mechanism can

already be used to exchange values between concurrent threads as a single-slot queue.

5.4 Linear Slots

A linear slots abstraction is a generalization that allows exchange of several linear

atomic values, much like how semaphore generalizes mutual exclusion. Semaphore,

also conceptualized by Dijkstra, is a counter that admits at most a certain number

of processes as determined by the number of available resources. The counter starts

at a finite positive number. A process acquires one resource by atomically decreasing

the counter, and releases the resource by atomically increasing the counter. When

the counter reaches zero, no more processes may be admitted.

Linear slots is an analogy to the semaphore using an array of linear atomic values.

It gives a view of the slots as a circular array. Two operations are provided on possibly

infinite index i: a put(x, i) would only store x to slot i if slot i is vacant, and get(i)

would attempt to swap out the value at slot i with nil. However, the circular array

only has a finite capacity, so the slots may only hold a finite number of resources even

though the index is potentially infinite.

Listing 5.7: Linear slots.
1 template<class Value /* implements atomic_value<?> */, size_t n>
2 class linear_slots {

149

3 private:
4 STATIC_ASSERT(IS_POW2(n));
5

6 public:
7 typedef Value value_type;
8 enum { capacity = n };
9

10 bool put(value_type& x, size_t i) volatile throw() {
11 if (!x) return true;
12 value_type nil;
13 return values_[i % n].cswap(x, nil.expect());
14 }
15

16 value_type get(size_t i) volatile throw() {
17 value_type x;
18 values_[i % n].swap(x);
19 return x;
20 }
21

22 private:
23 value_type values_[n];
24 };

The static assertion checks at compile time that array size n is a power of 2, which

makes it possible for the array index to seamlessly wrap-around at the same time

integer overflow happens.

A process that wishes to acquire a resource from the linear slots would iterate

through all i and try a get(i). A process that wishes to release resource x into the

slots would iterate through all i and try a put(x, i) until it succeeds.

Listing 5.8: Slots semaphore.
1 template<class Slots>
2 class slots_semaphore {
3 public:
4 typedef Slots slots_type;
5 typedef typename slots_type::value_type value_type;
6

7 value_type acquire() volatile throw() {
8 value_type x;

150

9 for (size_t i = 0; ; ++i) {
10 x = slots_.get(i);
11 if (x) break;
12 }
13 return x;
14 }
15

16 void release(value_type x) volatile throw() {
17 for (size_t i = 0; ; ++i) {
18 if (slots_.put(x, i))
19 break;
20 }
21 }
22

23 private:
24 slots_type slots_;
25 };

Slots differ from a semaphore in the sense that slots typically start empty and be-

comes populated by a producer. The fixed capacity of the slots imposes a limit on the

number of resources that can simultaneously be passed from all producers to all con-

sumers, but it does not restrict the total number of resources that could pass through

the slots. This is already a primitive form of a multiple-producer multiple-consumer

queue except there is no ordering guarantee. A more sophisticated implementation

would randomize the index to begin the put() and get() trial, so that memory access

contention is distributed evenly across the slots.

5.5 Double-Ended Queue

A queue is a collection of objects where items removed from the queue are ordered

the same way they were inserted, in first-in first-out (FIFO) order. A double ended

queue provides one additional operation, pop(), which removes the item just inserted,

in last-in first-out (LIFO) order. This data structure is useful for work stealing where

151

the deque is used mostly as a call-stack (LIFO) by a worker, but work may be removed

from the bottom of the stack (FIFO) by a thief which minimizes interference with

the worker. Also, by assuming that the deque is single-producer (the worker) and

multiple-consumer (thieves), the asymmetry allows the push() and pop() to be vastly

simplified compared to remove() which must ensure that thieves do not step on each

other’s toes.

Cilk is a parallel computing language whose runtime system uses this asymmetric

deque [52]. An asymmetric deque is the foundation of Cilk’s work-first principle which

minimizes overhead along the critical path of the worker’s stack-like computation, but

allows more synchronization overhead to occur outside of the critical path when work

is stolen. Cilk implements a semi-locked deque where push() requires no mutual

exclusion locking, pop() only acquires the lock when the deque is about to become

empty—which means it may enter a contention with the thief—and remove() aways

requires locking. Mutual exclusion ensures that only one thread could manipulate

the bottom of the deque while other threads must block.

Here a non-blocking asymmetric deque is presented which requires no mutual

exclusion in any of its operations, based on the design of an array-based non-blocking

queue by Robert Colvin and Lindsay Groves [31], which is itself a formally verified

and corrected version of an earlier design by Shann, Huang and Chen [103]. The

earlier queue designs were symmetric as they assume multiple producer and multiple

consumer, and they do not support stack-like operation.

Furthermore, in order to work-around the ABA problem commonly encountered

by concurrent algorithms using compare-and-swap, the earlier designs require a special

compare-and-swap operation on a word with a version counter. Recall that compare-

and-swap conditionally exchanges the value of a memory location if the memory loca-

tion holds some expected value. ABA problem happens when the memory location is

152

changed from A to B and back to A, so the exchange would succeed even though the

memory location had been modified twice. An algorithm generally could not rely on

compare-and-swap for modification detection unless it uses a monotonically increas-

ing version counter along with compare-and-swap to detect changes. Unfortunately,

not many hardware supports this special compare-and-swap. The non-blocking asym-

metric deque presented here uses only standard atomic conditional and unconditional

exchange, which makes a practical implementation possible.

Without version counter, compare-and-swap needs to be tied-in more strongly

to the invariants of the data structure so that invariant violation implies that the

exchange would fail. This is a key insight pivotal to the correctness proof of any

non-blocking lock-free wait-free algorithms using compare-and-swap.

5.5.1 Structural Invariants

The deque consists of a cyclic array of linear objects values of size N , and two un-

signed integers front and rear, which are indices into the array. In terms of stack-like

operations of the deque, front is the top and rear is the bottom. The actual position

in values is computed by taking modulo N ; however, integer wrap-around is allowed

to happen in practice, provided that:

• Array size N is in power of 2, so integer wrap-around does not break the con-

tinuity of the array indexing.

• Given two unsigned integers a and b, the inequality a < b is written as (a−b) < 0

where the quantity (a−b) is interpreted as a signed integer in two’s complement.

This “rolling inequality” works as long as b is never ahead of a by more than

half the maximum value expressible by the integer. This condition holds when

comparing front and rear because they are never further apart than the array

153

size, which is much smaller than half of the maximum integer value.

• A thread is never “stuck” long enough to allow integer wrap-around to cause

ABA problem. This assumption about the relative computing speeds of the

threads would be frowned upon by Dijkstra, but sufficiently large integer size

makes speed differences unlikely to cause problems.

In addition, the following properties about front, rear, and values hold.

• It is always the case that 0 ≤ front − rear ≤ N . When front − rear = N , the

deque is full. When rear = front, the deque is empty. However, the deque may

or may not be empty when rear < front.

• When rear < front, we allow values[rear] to be nil when it is removed by a

consumer while it has not had a chance to update rear, or values[front − 1] to

be nil when it is removed by the producer while it has not had a chance to

update front. Otherwise for all i such that rear < i < front− 1, we require that

values[i] be a continuous streak of non-nil items.

• For all i such that i < rear or i ≥ front, it must be that values[i] is nil, unless

front− rear = N . Only the producer is allowed to put an item in values[front],

and it is only able to do so safely when this invariant holds.

• Only the producer is allowed to modify front which may increase or decrease,

but rear may be modified by any thread and is monotonically increasing.

Notice that ABA problem could still happen with individual items in values. The

problem is partially remedied with linear resources that have unique values, such as

memory addresses of objects. Even so, an item could still be removed and somehow

154

put back into the same place. When ABA problem happens, items could be prema-

turely removed, hence are no longer removed first-in first-out. Fortunately, a strict

ordering is not required when the deque is used for work stealing.

5.5.2 The Implementation

The linear deque class is parameterized by the atomic value type and a fixed size.

Listing 5.9: Linear double-ended work-stealing queue.
1 template<class Value /* implements atomic_value<?> */, size_t n>
2 class linear_deque {
3 private:
4 STATIC_ASSERT(IS_POW2(n));
5

6 public:
7 typedef Value value_type;
8

9 linear_deque() throw()
10 : rear_(0u), front_(0u) {}
11

12 ~linear_deque() throw() {
13 assert(rear_ == front_);
14 }

The push() function is only used by the producer to put a value x to the front of

the deque. It returns true if the item is successfully pushed, and x would become

nil; or false if the deque is full, and x would be left intact.
15 bool push(value_type& x) throw() {
16 size_t front = front_;
17 if (!x)
18 return true;
19 else if ((ptrdiff_t) (front - rear_) >= (ptrdiff_t) n)
20 return false;
21

22 values_[front % n].swap(x);
23 front_ = front + 1;
24

25 return true;

155

26 }

If push() determines that the deque has available space, since there is only one pro-

ducer, and rear is monotonically increasing, the deque could only free up more space

after the fullness check. If the deque has space, then push() swaps x with values[front],

and the value swapped out from values[front] must be nil because values[i] is nil for

i ≥ front. The producer is the only thread modifying front, so it can do so using

simple memory write (which is atomic). It does not need to use compare-and-swap.

The pop() function is only used by the producer to remove a value from the front

of the deque. A non-nil item is removed upon success, or nil might indicate that the

deque is empty.
27 value_type pop() throw() {
28 size_t front = front_, pop_ind = (front - 1) % n;
29 value_type x;
30 values_[pop_ind].swap(x);
31

32 if (x)
33 if ((ptrdiff_t) (front - rear_) > 0)
34 front_ = front - 1;
35

36 return x;
37 }

If pop() swaps out a non-nil item from the “pop index” which is front − 1, then it

would decrement front provided that the resulting front still satisfies front ≥ rear. If

it encounters a nil value, then it assumes that the deque has become empty because

of the continuity invariant of non-nil items.

The remove() function is used by any number of consumers or the producer to

remove an item from the rear of the deque. Because of this, the algorithm must

allow any of front, rear, and values[rear] be changed by another thread at any time.

The general strategy is to create a snapshot of these variables to work with. It

156

would attempt to swap the value out of values[rear] which may fail if another thread

succeeded doing so before the current thread, in which case it must still make progress

by incrementing rear to skip over the position at values[rear] which is now nil. This

is how remove() achieves non-blocking. Note that remove() will work correctly even

if the invariant requiring non-nil items to be continuous is broken. If the deque is

somehow corrupted this way, for example due to ABA problem as mentioned before,

remove() would still be able to exhaust the items in the deque while pop() would

consider the deque to be empty.
38 value_type remove() volatile throw() {
39 typedef typename value_type::expect_type expect_type;
40 size_t rear, front, rear_ind;
41 value_type x;
42 expect_type expect;
43

44 retry:
45 rear = rear_, front = front_;
46 rear_ind = rear % n;
47 expect = values_[rear_ind].expect();
48

49 if ((ptrdiff_t) (front - rear) <= 0)
50 return value_type();
51

52 if (rear != rear_)
53 goto retry;
54

55 if (expect != x.expect() /* nil */) {
56 if (values_[rear_ind].cswap(x, expect)) {
57 atomic_compare_and_exchange_val_rel(&rear_, rear + 1, rear);
58 return x;
59 }
60 } else {
61 if ((ptrdiff_t) (front - rear) > 1)
62 if (values_[rear_ind].expect() == x.expect() /* nil */)
63 if (front == front_)
64 atomic_compare_and_exchange_val_rel(&rear_, rear + 1, rear);
65 }
66 goto retry;

157

67 }

The algorithm first takes a moving snapshot of the deque (lines 45–47) in which

rear, front, and values[rear] are sampled at different times, and the variables may

not actually simultaneously hold these values in the snapshot. The accuracy of the

snapshot must be ascertained. For example, if the algorithm detects that rear has

been modified (line 52), this means the expected value of the item to be removed will

have changed as well, so it only makes sense to retry.

If the item to be removed is not nil (line 55), then the algorithm attempts to

remove it using compare-and-swap (line 56). If the item is successfully exchanged

out, it would try to advance rear past the removed item (line 57), but this does not

have to succeed because another consumer calling remove() could have done this for

us. In any case, the removed item is returned.

If the item to be removed appears to be nil, the algorithm would only advance

rear if, after doing so, there would be at least one item between rear and front (line

61). This ensures that rear would never advance past front even if pop() tries to

decrement front. Then it needs to check whether the snapshot contains accurate

values for values[rear] (line 62) and front (lines 63). The sandwich check ensures that

both values[rear] and front simultaneously hold the values in the snapshot at some

point of time. If so, the algorithm attempts to advance rear past the nil value. Even

though both rear and front could be changed in the mean while, it is impossible for

pop() to rewind front to the same place as rear because values[rear] is nil, which

guarantees that after setting rear to rear + 1 using compare-and-swap, the invariant

rear ≤ front is still satisfied.

The rest of the class declares the member variables.
68 private:
69 volatile value_type values_[n];

158

70 volatile size_t rear_, front_;
71 };

And this completes the linear deque.

5.5.3 Discussion

The asymmetric deque algorithm presented here resembles linear slots with the addi-

tional front and rear variables. However, while slots manipulation is still blocking like

spin-locks, the push() and pop() operations of the deque are O(1) and non-blocking;

remove() is non-blocking, and in the worst case would make progress in O(P) attempts

where P is the number of threads trying to remove from the deque.

Furthermore, the push() and pop() operations for the producer are as fast as

a single-threaded stack. This allows the producer to use the deque as a call stack

with no synchronization overhead. All the synchronization complexity is delegated

to remove() which is used by a thief that is only stealing work because it is already

idle, so the runtime system wastes no time in the critical path of the computation.

Although the non-blocking deque has negligible synchronization overhead, it is

certainly not contention-free. In a typical parallel system with a number of work-

ers, there would be the same number of deques statically assigned one-to-one to the

workers. Each deque would occupy its own cache line, and each worker would use

its private deque as a stack. Normally, push() and pop() will not cause activity on

the memory bus at all. If any worker becomes idle, it would steal work from its peer

in a round-robin fashion. Note that round-robin is equivalent to randomizing which

deque to steal work from because each worker all round-robin at different rates and

would become out of phase. This is sufficient to distribute memory contention over

all deques.

The deque would also be relatively small-sized. If the producer finds that the

159

deque is full, it could simply compute the work right away without placing it onto

the deque. The deque is only used to make work available to potential thieves. In a

typical divide-and-conquer workload, the work towards the rear (bottom) of the deque

tends to be larger sub-problems than the work towards the front (top), so larger sub-

problem tends to be stolen while smaller sub-problem tends to be computed by the

same worker. This allows the work-stealing to preserve the locality of reference and

uses the memory hierarchy the most efficiently. This is a property that linear slots

would not have because slots put() and get() guarantee no ordering.

5.5.4 Related Work

It is worth noting that while non-blocking work-stealing deque has been widely studied

in the past, most of them are not practical, either due to the assumption of the

availability of double- or multi-word compare-and-swap, or due to assumption about

memory management to overcome ABA problem. Multi-word compare-and-swap

is possible to achieve in software using single-word compare-and-swap [63], but a

single operation takes several hundreds of instruction cycles1 and also requires special

memory management to guarantee fresh “descriptors” for each operation.

The deque by Arora, Blumofe and Plaxton [8] assumes the availability of compare-

and-swap operation with versioning. The deque uses an infinite array with no size

constraint, which is impractical, but it is easy to adapt the deque to a bounded cyclic

array using a modulo index as well as comparing emptiness and fullness using a rolling

inequality, as described in our structural invariant. However, most importantly, their

algorithm has a race condition.

Here the algorithm is scrutinized more closely. Their notion of top and bottom
1The ballpark figure is 2-4 microseconds per operation in an era where CPUs are rated at 500MHz

to 1.5GHz.

160

is opposite to ours. Their “bottom” corresponds to our “front.” The pushBottom()

function is used by the single producer to add more work.
1 void pushBottom(Thread *thr)
2 {
3 localBot = bot;
4 deq[localBot] = thr;
5 localBot++;
6 bot = localBot;
7 }

Aside from the fact that it does not respect a bounded queue size which is easy to

fix, this function is straightforward.

The “top” corresponds to our “rear.” The popTop() function is used by thieves to

steal work.
8 Thread *popTop()
9 {

10 oldAge = age;
11 localBot = bot;
12 if (localBot <= oldAge.top)
13 return NULL;
14 thr = deq[oldAge.top];
15 newAge = oldAge;
16 newAge.top++;
17 cas(age, oldAge, newAge);
18 if (oldAge == newAge)
19 return thr;
20 return ABORT;
21 }

Their compare-and-swap modifies newAge to the value of oldAge if the operation

succeeds, so the condition at line 18 is true if the operation succeeds. Although the

function may ABORT, it suffices to retry.

The popBottom() function is used by the worker to remove work.
22 Thread *popBottom()
23 {
24 localBot = bot;

161

25 if (localBot == 0)
26 return NULL;
27 localBot--;
28 bot = localBot;
29 thr = deq[localBot];
30 oldAge = age;
31 if (localBot > oldAge.top)
32 return thr;
33 bot = 0;
34 newAge.top = 0;
35 newAge.tag = oldAge.tag + 1;
36 if (localBot == oldAge.top) {
37 cas(age, oldAge, newAge);
38 if (oldAge == newAge)
39 return thr;
40 }
41 age = newAge;
42 return NULL;
43 }

Most of the complexity is actually attributed to resetting top and bottom to zero

when the worker is about to enter contention with a thief (line 31). This complexity

does not make popBottom() slower than popTop() because it only happens in the

case of contention which is rare. When this happens, the resolution of who gets the

item is determined by who gets to modify the “top” index (line 37). This has a nice

side-effect that when the deque becomes empty, it would fully restore its capacity

by setting both top and bottom to 0; otherwise as items are added and stolen, the

deque’s capacity would diminish.

There is a race condition between the worker and a thief. Suppose at some point

in time, bot == oldAge.top + 1 which is necessary for the condition at line 31 to

hold. The worker enters popBottom() and is suspended right before line 28. A thief

enters popTop(), retrieves the same item, and is suspended right before line 17. The

worker proceeds and happily returns the thr item that the last thief has not finished

stealing. The thief proceeds and returns the same item. This causes a task to be

162

computed twice, which may have non-idempotent side-effects.

Hendler, Lev, Moir, and Shavit designed a non-blocking deque that can dynam-

ically adjust its size [65]. The motivation is to overcome the problem that Arora-

Blumofe-Plaxton deque loses capacity if the deque never becomes empty. The dy-

namic sizing is accomplished by using a doubly linked list of array fragments. It uses

multi-word compare-and-swap to modify “top” and “bottom.” The dynamic deque is

mostly analogous to the original but is more complex, so it is not clear if the race

condition that affected the original also affects the new version.

The linear deque presented in this section is the first of its kind with practical and

efficient software implementation, and is simple enough to prove for correctness.

5.6 Singly Linked List

Non-blocking manipulation of singly linked list presents an interesting challenge where

aliasing is required for expressing the algorithm. Consider list insertion without using

linear pointer.
1 template<
2 class Ptr /* implements pointer<? implements singly_linked_node<Ptr> > */>
3 class singly_linked_list_atomic_nonlinear {
4 public:
5 typedef Ptr ptr_type;
6

7 static void insert_at(ptr_type node, volatile ptr_type& curr) throw() {
8 while (true) {
9 ptr_type expect = curr;

10 node->next() = expect;
11 if (atomic_compare_and_exchange_bool_rel(&curr, node, expect) == 0)
12 break;
13 }
14 }
15 };

163

A temporary alias of curr is stored into the node->next() pointer of the node. If

the compare-and-swap to modify curr fails, the value of node->next() is discarded

and subsequently overwritten in the next retry.

The introduction and elimination of the alias is more clear with the linear atomic

pointer version of the same function.

Listing 5.10: Concurrent singly linked list insertion.
1 template<
2 class Ptr
3 /* implements atomic_pointer<? implements singly_linked_node<Ptr> > */>
4 class singly_linked_list_atomic {
5 public:
6 typedef Ptr ptr_type;
7 typedef typename ptr_type::expect_type expect_type;
8

9 // Non-blocking singly linked list insertion.
10 //
11 static void insert_at(ptr_type node, volatile ptr_type& curr) throw() {
12 assert(node);
13

14 while (true) {
15 expect_type expect = curr.expect();
16 node->next().reset(expect); // aliasing.
17 if (curr.cswap(node, expect))
18 break;
19 (void) node->next().get(); // undo aliasing.
20 }
21

22 (void) node.get(); // undo aliasing.
23 }
24 };

This code requires a new reset() method that takes a non-linear alias so that the

expected value may be temporarily materialized as a linear value. If the compare-

and-swap fails, the alias still resides in node->next() so that needs to be eliminated.

If the compare-and-swap succeeds, the alias is the old curr now swapped out to node,

so we eliminate the alias in node. Linearity checking forces us to eliminate the extra

164

alias before the next iteration of the loop or before the function returns.

For this purpose of allowing the expect value to be materialized to a linear value,

we augment linear_atomic_base<> with the following method.
template<...>
class linear_atomic_base {
...

1 public:
2 void reset(expect_type expect) throw() {
3 self()->value() = static_cast<value_type>(expect);
4 }

...
};

This controlled aliasing also allows us to implement the corresponding remove_at()

function naively.
1 static ptr_type remove_at(volatile ptr_type& curr) throw() {
2 ptr_type node;
3

4 while (true) {
5 expect_type expect = curr.expect();
6 node.reset(expect); // aliasing.
7 if (!node) break;
8

9 if (curr.cswap(node->next(), expect))
10 break;
11 (void) node.get(); // undo aliasing.
12 }
13

14 if (node)
15 (void) node->next().get(); // undo aliasing.
16 return node;

The usual precautions about volatile value is taken between lines 5 to 7, which takes

a snapshot of curr and ensures that it is not nil. The code also observes linear

ownership semantics. However, this implementation is still incorrect in a subtle way.

The reason is that node->next() is actually volatile, a fact that is not reflected on

165

the type. If its type were volatile, then it cannot be used with cswap() which requires

the first argument to be non-volatile.

It is not hard to see why the first argument must be non-volatile from the def-

inition of cswap() in Listing 5.4. If that were volatile, then between the read of

that.value() and the assignment that.value() = old_val, the value could have

been modified externally, and the external modification would have been lost. How-

ever, atomic_compare_and_exchange_bool_rel() would only protect us against the

external modification of self()->value(), not that.value().

One way to safely remove singly linked list nodes in a non-blocking manner is given

by Tim Harris [62]. Assuming that memory addresses of nodes are word aligned, the

idea is to use the least significant bit of the node pointers as a marker to indicate

whether the current node that holds the pointer is to be removed, as opposed to

marking the node the pointer points to. The marker is updated using compare-and-

swap, requiring the next pointer to be the same. A marked node could then be excised

by any thread that traverses the list, using another compare-and-swap, thus allowing

the removal to be non-blocking.

5.7 Linear Transactional Pointer

It is also possible to use a double-word compare-and-swap to accomplish non-blocking

singly-linked list node removal, as shown by Greenwald [58]. A double-word compare-

and-swap atomically performs two sets of compare-and-swap, with two addresses, two

old values, and two new values. However, in this particular case, we only require

compare-and-swap to exchange two memory locations. A single-compare double-

swap atomic_compare_and_exchange_ptr_bool(mem1, mem2, oldval1) could be

used to correctly implement cswap() that allows the first argument to be volatile.

166

1 bool cswap(volatile self_type& that, expect_type expect) volatile throw() {
2 value_type old_val = static_cast<value_type>(expect);
3 return (atomic_compare_and_exchange_ptr_bool(
4 &self()->value(), &that.value(), old_val) == 0);
5 }

A linear transactional pointer is one that supports cswap() and swap() on two volatile

memory locations transactionally.

Note that our single-compare double-swap is not to be confused with “compare

double and swap” (cds) instruction on IBM 370 [89] which is a compare-and-swap

that operates on two consecutive words (8 bytes on a 32-bit machine). The same

instruction is known as CMPXCHG8B on x86 (32-bit), or CMPXCHG16B on amd64

(64-bit). Double-width compare-and-swap is useful to manipulate pointers with a

timestamp in order to avoid the ABA problem.

For single-compare double-swap, it is unlikely that the hardware can provide the

operation as a primitive because the two memory locations need not be consecutive.

On Non-Uniform Memory Architecture machines, the two addresses may belong to

two independent memory controllers, which complicates memory bus locking. A soft-

ware approach similar to the restricted double-compare single-swap operation (RD-

CSS) [63] proposed by Tim Harris et al. would have to be used. In their work, RDCSS

is used as a primitive to implement generic n-word compare-and-swap.

RDCSS takes two memory addresses, two old values, and one new value. If the

memory addresses simultaneously hold the two expected old values, then a single new

value is written to the first memory address, leaving the second memory address un-

modified. Before the RDCSS operation takes place, the first address—which we will

potentially modify—is replaced with a pointer to a descriptor about the operation,

using a single-word compare-and-swap. The descriptor contains the operands of RD-

CSS. The descriptor could be told apart from a regular value as a chromatic pointer

167

which stores the color as the least significant bits of an otherwise aligned pointer.

When another thread reads a memory location and finds a descriptor, it would at-

tempt to make progress by finishing off the operation described there, so RDCSS

is non-blocking. Completing the operation takes another single-word compare-and-

swap. Completion is only possible if the destination still has the pointer to the

descriptor.

The algorithm is correct as long as a new RDCSS operation implies that a dif-

ferent descriptor pointer will be used. Since we cannot have an infinite supply of

unique descriptors, special care must be given to the memory allocation and reuse of

the descriptors. A descriptor must not be reused if any thread is still attempting to

complete the operation using that descriptor. Otherwise a situation may arise that,

while the thread performing RDCSS binds the destination memory address with the

descriptor and blocks, another thread comes along and attempts to complete the oper-

ation, but before the operation could be completed, the first thread resumes, finishes

the operation, and releases the descriptor for reuse. If this descriptor is immediately

reused for the same memory location, the second thread would be completing the

operation using an inconsistent snapshot of the descriptor. Furthermore, since the

descriptor is reused, compare-and-swap would succeed with the corrupted value.

The memory allocation technique for descriptors, as suggested by Tim Harris,

uses reference counting to prevent reuse. Each thread maintains a private free list of

descriptors specifically for the operations initiated by that thread. Reference counting

and thread-private provisioning of descriptors ensures the required “freshness” of

descriptor in order for compare-and-swap to detect modifications. It is reported that

10% of the execution time is spent on reference counting and maintaining the free list

when there is no contention.

168

An alternative is to loosen the non-blocking requirement so that only readers are

non-blocking, but writers would block unless it has exclusive write access. The readers

are non-blocking because they can read the old values from the descriptor before the

operation completes. Since there is at most one writer, the descriptor may be reused

without reference counting, and each thread could just use its own descriptor. This

also alleviates the need of memory allocating the descriptor. This is the approach

the linear transactional pointer here would use to implement cswap() between two

volatile memory locations. Both memory locations would have to be “locked” with

the descriptor before the swap would happen.

Listing 5.11: Linear Transactional Pointer.
1 template<typename Tp>
2 class linear_trans_ptr /* implements trans_pointer<Tp> */
3 : public linear_base<linear_trans_ptr<Tp>, value_traits<uintptr_t> > {
4 protected:
5 typedef value_traits<uintptr_t> traits_type;

The linear transactional pointer is similar to linear chromatic pointer in that it

uses coloring to designate the descriptor. However, here the color is internal and not

exposed to the user. Three color tags are defined: zero for a regular pointer, one

for a descriptor at the first memory address, and two for a descriptor at the second

memory address. The one and two tags help the reader extract the correct field from

the descriptor upon access.
6 enum color_t { zero = 0, one = 1, two = 2, three = 3 };
7 enum { bits = 2u };
8

9 static const uintptr_t mask = (1 << bits) - 1;
10

11 static color_t color_of_int(uintptr_t x) throw() {
12 return static_cast<color_t>(x & mask);
13 }
14

15 template<typename Sp>
16 static Sp *ptr_of_int(uintptr_t x) throw() {

169

17 return reinterpret_cast<Sp *>(x & ~mask);
18 }
19

20 static uintptr_t
21 int_of_ptr(const volatile void *p, color_t c = color_t()) throw() {
22 uintptr_t x = reinterpret_cast<uintptr_t>(p);
23 assert((x & mask) == 0);
24 assert((c & ~mask) == 0);
25 return x | c;
26 }

The transaction descriptor contains the two memory addresses to be exchanged,

the original values in these locations, and a checksum to ensure consistency of a

snapshot. The checksum is computed by XOR’ing the other fields. This will work

even if the fields of the descriptor are read out of order. If a snapshot of the descriptor

is not consistent, the reader may return a bogus value when the descriptor is being

reused for a different operation.
27 struct desc_t {
28 volatile uintptr_t *a1, *a2; // addresses to pointers to be exchanged.
29 Tp *o1, *o2; // original values in these pointers.
30 uintptr_t cs; // checksum to ensure consistency.
31 };
32 //
33 static uintptr_t desc_checksum(const volatile desc_t& d) throw() {
34 const volatile uintptr_t *p =
35 reinterpret_cast<const volatile uintptr_t *>(&d);
36 return p[0] ^ p[1] ^ p[2] ^ p[3] ^ p[4];
37 }

Note that replacing the checksum with a monotonically increasing timestamp does

not guarantee snapshot consistency, since the fields might have been in the process

of updating before the timestamp reflects the change.

A reader would use the following access() function to read the value from a

memory location, which might be a regular value or a descriptor. In the case of a

descriptor, the reader discerns which field from the descriptor to return according to

170

the color.
38 Tp *access() const volatile throw() {
39 while (true) {
40 uintptr_t x = this->value();
41 assert(x != traits_type::invalid);
42

43 color_t c = color_of_int(x);
44 void *p = ptr_of_int<void>(x);
45

46 if (c == zero)
47 return static_cast<Tp *>(p);
48

49 volatile desc_t& dv = *static_cast<desc_t *>(p);
50 desc_t d = const_cast<desc_t&>(dv);
51 if (x != this->value() || desc_checksum(d) != 0) // cs is garbage.
52 continue;
53

54 if (c == one) {
55 return d.o1;
56 } else if (c == two) {
57 return d.o2;
58 } else {
59 abort();
60 }
61 }
62 }

On the other hand, if the transactional pointer itself is non-volatile (which means it

is not shared with any other threads), then the reader could use the simpler method.
63 Tp *access() const throw() {
64 assert(this->value() != traits_type::invalid);
65 return ptr_of_int<Tp>(this->value());
66 }

The public accessors expect() and the non-volatile reset() are simple.
67 private:
68 typedef linear_base<linear_trans_ptr<Tp>, traits_type> super_type;
69

70 public:
71 typedef Tp element_type;

171

72 typedef void *expect_type;
73

74 expect_type expect() volatile throw() {
75 return static_cast<expect_type>(this->access());
76 }
77

78 void reset(expect_type expect) throw() {
79 this->value() = int_of_ptr(expect);
80 }

The volatile release() method cannot simply swap out the value like before. It

has to observe the writer lock, which is held by another thread whenever the color is

non-zero. If the writer lock is not observed, the current thread could still swap out the

linear pointer atomically with nil and release it, but the other writer in the middle of

a swap might magically restore the linear pointer as remembered before the release,

causing the linear pointer to reappear, which would be incorrect. However, unlike a

writer swapping between two memory locations, the release writer here completes the

operation without acquiring a writer lock.
81 Tp *release() volatile throw() {
82 while (true) {
83 uintptr_t old = this->value();
84 if (color_of_int(old) != zero)
85 continue;
86 if (atomic_compare_and_exchange_bool_acq(
87 &this->value(), traits_type::nil, old) == 0)
88 return ptr_of_int<Tp>(old);
89 }
90 }

The swap() method begins by creating a descriptor that retains the old values of

the memory locations being swapped so that other readers may access the old values

in a non-blocking fashion, attempts to lock these locations with a colored pointer to

the descriptor, and finally commits the change if both memory locations are locked.

If one lock succeeds and the other one fails, the first lock is reverted if it has not

172

been changed. This avoids deadlock if two writers swap the memory locations in

the opposite order. There is a theoretical possibility of livelock if these two threads

simultaneously acquire the first lock, fail to acquire the second lock, and release the

first lock. However, this requires the two threads to be perfectly synchronized, an

occurrence that does not happen in practice. A race would typically be the tie-breaker.
91 swap(volatile linear_trans_ptr& that) volatile throw() {
92 desc_t d;
93 d.a1 = &this->value(), d.a2 = &that.value();
94

95 retry:
96 d.o1 = this->access(), d.o2 = that.access();
97 d.cs = 0; d.cs = desc_checksum(d);
98 assert(desc_checksum(d) == 0);
99

100 // This ensures that whichever thread that traverses to our
101 // descriptor from d.a1 gets the correct value for d.o1.
102 if (atomic_compare_and_exchange_bool_acq(
103 d.a1, int_of_ptr(&d, one), int_of_ptr(d.o1)) != 0)
104 goto retry;
105

106 // This ensures that whichever thread that traverses to our
107 // descriptor from d.a2 gets the correct value for d.o2.
108 if (atomic_compare_and_exchange_bool_acq(
109 d.a2, int_of_ptr(&d, two), int_of_ptr(d.o2)) != 0) {
110 // Could not acquire a2; revert a1.
111 atomic_compare_and_exchange_val_acq(
112 d.a1, int_of_ptr(d.o1), int_of_ptr(&d, one));
113 goto retry;
114 }
115

116 // Since access() does not modify *a1 nor *a2, this means by now
117 // we have exclusive access to both memory locations. Readers will
118 // make progress while writers will block.
119 *d.a2 = int_of_ptr(d.o1);
120 *d.a1 = int_of_ptr(d.o2);
121 }

If livelock becomes an issue, it can be trivially avoided by adding the following pream-

ble to swap() which sorts this and that by their memory addresses. That works be-

173

cause unconditional exchange is symmetric, i.e. p.swap(q) is the same as q.swap(p).
if (&this->value() > &that.value()) {

that.swap(*this);
return;

}

// rest of swap() ...

For compare-and-swap cswap(), the method differs by using expect to lock the

first memory address. Note, however, that livelock avoidance is not as straightforward

because cswap() is not symmetric, unlike swap(). The expect value is pinned to

the first memory location, so p.cswap(q, expect) is not the same as q.cswap(p,

expect). To prevent livelock, two different versions of cswap() would have to be

implemented, one that acquires this before that, the other one acquires that before

this. The actual cswap() would dispatch between the two versions depending on

the two memory addresses. Here only one version is presented.
122 bool
123 cswap(volatile linear_trans_ptr& that, expect_type expect) volatile throw() {
124 assert(color_of_int(int_of_ptr(expect)) == zero);
125

126 desc_t d;
127 d.a1 = &this->value(), d.a2 = &that.value();
128

129 retry:
130 d.o1 = this->access(), d.o2 = that.access();
131 d.cs = 0; d.cs = desc_checksum(d);
132 assert(desc_checksum(d) == 0);
133

134 if (d.o1 != expect)
135 return false;
136 if (atomic_compare_and_exchange_bool_acq(
137 d.a1, int_of_ptr(&d, one), int_of_ptr(expect)) != 0)
138 return false;
139 if (atomic_compare_and_exchange_bool_acq(
140 d.a2, int_of_ptr(&d, two), int_of_ptr(d.o2)) != 0) {
141 // Could not acquire a2; revert a1.
142 atomic_compare_and_exchange_val_acq(

174

143 d.a1, int_of_ptr(d.o1), int_of_ptr(&d, one));
144 goto retry;
145 }
146 *d.a2 = int_of_ptr(d.o1);
147 *d.a1 = int_of_ptr(d.o2);
148 return true;
149 }

The value constructor, reference constructor, move constructor, value assignment,

reference assignment, and other accessors and mutators including the dereference

operator, are similar to linear_chroma_ptr<> and omitted here for brevity.
150 };

And this concludes the linear transactional pointer.

5.8 Towards Theorem Proving

In a previous section, the concurrent singly linked list example in Listing 5.10 mo-

tivated the use of controlled aliasing by creating a linear pointer from an expect

value. The aliasing is not due to the fact that we intend to duplicate the ownership

of the object, but rather because there needs to be a way to deal with two different

outcomes, one where the compare-and-swap succeeds, and one where the compare-

and-swap fails. We shall see that in AT S, a programming language with theorem

proving that has both classical and linear propositions, this aliasing is not necessary.

Here is a brief introduction to concepts in AT S, assuming that the reader is

familiar with an ML-styled language.

• A proof term is part of a program expression that are type checked with the

rest of the program, but are stripped before translating the program to machine

code.

175

• A view is the type of a linear proof term. A prop is the type of a classical

proof term. These are analogous to the way a type characterizes a program

expression.

• The dataview syntax defines the sum-type constructors for linear proof terms,

in the same way datatype defines the sum-type constructors for program ob-

jects.

• The view t @ l (the “@” symbol is an infix type operator) is a type of a linear

proof term that says there is a value of type t at some address l. There is

no algebraic constructor for such linear proof, but the proof term is generally

obtained from somewhere else, e.g. a memory allocator which is an external

function.

• A t@ype is a type that has a specific size. C primitive types like char, int,

long, float, and double are all represented as their own respective t@ype in

ATS.

With these simple concepts, it is possible to formulate the type of some external

function that performs compare-and-swap—hopefully atomically, although the type

does not reflect nor enforce that.
1 dataview cswap_result (bool, v1: view+, v2: view+) =
2 | cswap_succ (true, v1, v2) of v1
3 | cswap_fail (false, v1, v2) of v2
4

5 fun {t1, t2: t@ype | sizeof t1 == sizeof t2}
6 cswap {l: addr} (pf: t1 @ l | mem: ptr l, newval: t2, oldval: t1) :<>
7 [b: bool] (cswap_result (b, t2 @ l, t1 @ l) | bool b)

The type for the cswap function describes the sequential semantics of compare-and-

swap. Given a memory location l which currently holds some value of type t1 (i.e.

176

t1 @ l) the objective is to replace the value of type t1 with a value of type t2. If

the operation is successful, then we have t2 @ l, otherwise we still have t1 @ l.

The reason cswap exchanges two types and not just two values of the same type is

because it allows the use of dependent types in AT S to track in a more refined way

how values are swapped. With dependent types, the integers 0 and 1 have the type

int 0 and int 1 respectively. An unknown integer has the type ∃n.int n, or written

as [n: int] int n (the first int inside the square brackets actually refers to an

integer sort which serves the purpose of characterizing the index to the int type, and

they happen to have the same name). The formulation of swapping between t1 @ l

and t2 @ l expresses precisely how the dependent-typed values are exchanged. Of

course, the prerequisite is that t1 and t2 must have the same size in memory.

The outcome of the conditional swap is indicated by its return value, which is of

the type ∃b.bool b, or written as [b: bool] bool b. Moreover, the index b is used

to choose one of the two linear proof terms of the cswap_result(b, t2 @ l, t1 @

l) view: cswap_succ which gives us t2 @ l in case b is true, and cswap_fail which

gives us t1 @ l in case b is false.

Here is how a singly linked list may be defined in AT S.
8 viewtypedef node_struct (t: viewt@ype, next: addr) = @{ x = t, next = ptr next }
9

10 dataview list (t: viewt@ype+, int (* len *), addr (* first *)) =
11 | list_nil (t, 0, null) of ()
12 | {len: nat} {first: agz} {next: addr}
13 list_cons (t, len + 1, first) of
14 (node_struct (t, next) @ first, list (t, len, next))
15

16 viewdef list (t: viewt@ype, first: addr) = [len: nat] list (t, len, first)
17 viewdef list (t: viewt@ype) = [first: addr] list (t, first)

We begin with a node structure that has two members, x which holds the item (a

viewtype is a type that may carry a linear view), and next which holds a pointer

177

to the memory location of the next node. The linear view list (t, len, first)

describes the logical structure of a singly linked list. A linear proof of that view is

built from the base case list_nil which is the empty list of length zero represented

by the null pointer, and inductively using list_cons which combines the rest of

the list list (t, len, next) with a first node node_struct(t, next) whose next

pointer points to the rest of the list. The node is located at address first, and the

resulting list list (t, len + 1, first) is one item longer. Here {first: agz}

is a shorthand for {first: addr | first > null}, i.e. a memory address that is

greater than zero. The shorthands list (t, first) and list t allow us to use the

list type without caring about list length, or without caring about both the list length

and where the first node of the list is.

Recall that insert_at in C++ has the following declaration.
static void insert_at(ptr_type node, volatile ptr_type& curr) throw();

In AT S, it could be given the following type.
18 fun {t: viewt@ype} insert_at {node: agz} (
19 node_pf: list (t, 1, node) | node: ptr node,
20 curr_ref: ref @(list t | ptr)) :<!ntm,!ref> void

where a node is described by a linear view list (t, 1, node) testifying the existence

of a single-item list at location node, accompanying a pointer ptr node to such list.

The current cursor for insertion becomes ref @(list t | ptr) which is a reference

to some list pointer that carries a proof of the list. The volatile qualifier is lost in

translation. The insert_at function has two side-effects: !ntm for non-termination,

and !ref for modifying shared reference.

In AT S, ref is really an abstract type parameterized by t which is the viewt@ype

of the target item. Dereferencing is accomplished by casting ref to a pointer and

a “view box” that stores a linear proof testifying the item’s existence. A view box

is a classical proposition carrying a linear resource, and it is similar to the modality

178

operator in linear logic that allows controlled sharing. When a view box is opened

in a lexical scope, the linear proof inside can be temporarily borrowed, but another

linear proof of the same view must be put back before the scope ends.
21 abstype ref (t: viewt@ype)
22 absprop vbox (v: view)
23

24 castfn deref {t: viewt@ype} (r: ref t) :<> [l: agz] (vbox (t @ l) | ptr l)

Unfortunately, deref is not useful in the case where we want to implement a non-

blocking version of insertion. When applying deref on a value of type ref @(list

t | ptr), it returns a view box with the view @(list t | ptr) @ l and a pointer

ptr l, which means that both the proof of list t (which takes no size) and the list

pointer ptr are both located at memory address l. The reason that deref is not

useful is because, in this setting, both the proof list t and the list pointer ptr must

be stored and retrieved together, via ptr l.

After retrieving and unpacking @(list t | ptr), the proof for list t is used as

part of list_cons, and the value of ptr is assigned to the next pointer of the node.

If the compare-and-swap fails, the view box now requires us to fold back the list

t proof while storing the same value of ptr back to the reference. We must not do

that because the current pointer to the volatile list must have been changed to some

other value, which is the reason why the swap failed in the first place!

To allow the proof to be put back into the view box without altering the pointer,

it is necessary to treat list t and (ptr @ l | ptr l) separately. Also, in order to

actually build the new list, we need a more precise relation between list t and ptr,

namely that the pointer actually points to the list. Here is a first try.
25 castfn list_deref {t: viewt@ype} (r: ref @(list t | ptr)) :<>
26 [first: addr] [l: agz] (vbox @(list (t, first), ptr first @ l) | ptr l)

The cast function list_deref allows us to make an ephemeral assumption (as long

179

as the view box remains open) that there is a proof for list (t, first) whose first

node is at address first, and there is a pointer ptr first to this list at another

location l. However, there is a problem. The type of the view box is too specific.

Recall that in order to close the view box, the exact same view has to be put back

in. The formulation here prohibits ptr first from ever pointing to a new location,

otherwise the view ptr first @ l would change. If the insertion succeeds, it should

become ptr node @ l.

The trick is to move the existential quantifiers ∃first and ∃l inside the view box.

The view list_ptr_at defined below encapsulates the relationship between list

(t, len, first) and ptr first @ l, and allows existential quantifier for len and

first to be placed inside the view box, which means that list insertion can now both

change the list length and modify the list pointer to a new location.
27 viewdef list_ptr_at (t: viewt@ype, len: int, first: addr, l: addr) =
28 (list (t, len, first), ptr first @ l)
29

30 viewdef list_ptr_at (t: viewt@ype, l: addr) =
31 [len: nat] [first: addr] list_ptr_at (t, len, first, l)

And finally, the fixed version of list_deref is given as follows.
32 castfn list_deref {t: viewt@ype} (r: ref @(list t | ptr)) :<>
33 [l: agz] (vbox (list_ptr_at (t, l)) | ptr l)

To get a sense of what is required to implement the concurrent singly list insertion

inAT S, let us study the non-concurrent version first. The basic framework is to setup

a loop as a recursive function that would retry in case of failure, though for the non-

concurrent version the loop executes only once. The body of the loop consists of

dereferencing the volatile list reference, unpacking the proof, assigning to pointers,

constructing the proof of the new list, and placing the proof back to the view box.
1 implement {t} insert_at (node_pf | node, curr_ref) =
2 let
3 fun loop {node: agz} (node_pf: list (t, 1, node) | node: ptr node)

180

4 :<!ntm,!ref> void =
5 let
6 val [l: addr] (vbox curr_pf | curr_ptr: ptr l) = list_deref curr_ref
7 val (curr_list_pf, curr_ptr_pf) = curr_pf
8 val list_cons (node_at_pf, list_nil ()) = node_pf
9 in

10 !node.next := !curr_ptr;
11 !curr_ptr := node;
12 curr_list_pf := list_cons (node_at_pf, curr_list_pf);
13 curr_pf := (curr_list_pf, curr_ptr_pf);
14 end
15 in loop (node_pf | node) end

It might be helpful to have an idea how each of the assignment statement affects the

view. In AT S, the prefix operator ! in a dynamic expression is analogous to the

prefix operator * in C/C++ which converts a pointer to an l-value.

• For !node.next := !curr_ptr, the view for node_at_pf changes from node_struct

(t, null) @ node to node_struct (t, curr) @ node where curr is the lo-

cation of the current list’s first node. Note that curr_ptr_pf has the view ptr

curr @ l, so !curr_ptr reads out a value of the type ptr curr.

• For !curr_ptr := node, the view for curr_ptr_pf changes from ptr curr @

l to ptr node @ l.

• For curr_list_pf := list_cons (node_at_pf, curr_list_pf), the view for

curr_list_pf changes from list (t, len, curr) to list (t, len + 1, node).

• Finally, for curr_pf := (curr_list_pf, curr_ptr_pf), the view of curr_pf

changes from list_ptr_at (t, len, curr, l) to list_ptr_at (t, len +

1, node, l) which allows the view box vbox curr_pf to close.

The concurrent, non-blocking version of insert_at is similar, except it uses cswap

and has to determine the outcome of compare-and-swap.

181

Listing 5.12: Concurrent, non-blocking singly linked list insertion in AT S
1 implement {t} insert_at (node_pf | node, curr_ref) =
2 let
3 fun loop {node: agz} (node_pf: list (t, 1, node) | node: ptr node)
4 :<!ntm,!ref> void =
5 let
6 val [l: addr] (vbox curr_pf | curr_ptr: ptr l) = list_deref curr_ref
7 val (curr_list_pf, curr_ptr_pf) = curr_pf
8 val list_cons (node_at_pf, list_nil ()) = node_pf
9

10 val expect = !curr_ptr
11 val () = !node.next := expect
12

13 val (cswap_pf | result) = cswap (curr_ptr_pf | curr_ptr, node, expect)
14 in
15 if result then let
16 val cswap_succ (curr_ptr_pf (* ptr node @ l *)) = cswap_pf
17 in
18 curr_list_pf := list_cons {t} (node_at_pf, curr_list_pf);
19 curr_pf := (curr_list_pf, curr_ptr_pf);
20 end
21

22 else let
23 val cswap_fail (curr_ptr_pf (* ptr curr @ l *)) = cswap_pf
24 in
25 !node.next := null;
26 node_pf := list_cons (node_at_pf, list_nil ());
27 curr_pf := (curr_list_pf, curr_ptr_pf);
28 $effmask_ref (
29 loop (node_pf | node)
30);
31 end
32 end
33 in loop (node_pf | node) end

It is worthwhile to note that curr_ptr_pf in the success case and the failure case

have different view. In the success case, we have a proof of the view ptr node @ l,

so we use it to construct a proof of the new list and put the proof back to the view

box. In the failure case, we still have a proof of the view ptr curr @ l, which forces

182

us to roll back the proof before we can close the view box. Failure to roll back will

cause a type error; the reader could verify this by removing the three assignments in

the failure case (and keep the recursive call).

At the moment, it might seem that AT S has all the theorem proving facility to

reason about the correctness of a concurrent algorithm, but it is not the case. Notice

that both the non-concurrent and the concurrent implementations of insert_at pass

type-checking under the same set of axioms. The reason, as mentioned earlier, is

that the volatile qualifier is lost in translation. Although we temporarily assume that

the current list has a certain proof and certain pointer value, this assumption is not

materialized until compare-and-swap tests it. A possible future direction is to not

close the view box by lexical scope, but require the call to cswap to close it. This

gives cswap a transactional semantic.

5.9 Conclusion

Going back to the question how much linearity can be preserved in a runtime system

where linear objects are passed between concurrent threads, it is clear that primitives

such as conditional and unconditional exchange do preserve linearity, and a practical,

linearity-preserving double-ended queue can be built using these primitives. However,

the correctness of a concurrent algorithm is much more than linear object ownership

semantics. The structural invariants of the deque demonstrates that much of the

correctness arguments are not related to linearity at all. In fact, a linearity preserving

concurrent algorithm can still be incorrect, such as naively removing a node from a

singly linked list, which is prone to the ABA problem. Using a stronger primitive

such as compare-and-swap of two volatile memory locations remedies this, but the

correctness of such primitive also cannot be reasoned with linearity alone.

183

Attempting to codify the structural invariants of a concurrent data structure using

an axiomatic proof system presents a different challenge. Many such proof systems

assume that objects are immutable, although object mutation can be expressed with

framing. It can be understood that linear logic achieves framing using a specific

interpretation of sequent calculus. Even so, object state changes are assumed to be

explicitly done by the program’s current control flow. However, it is not the case

with concurrent algorithms, where certain objects are volatile and can change at any

time by an external process. This short-coming is evident with the AT S formulation

of singly linked list insertion where the same set of axioms will admit both the non-

concurrent and concurrent versions, when only the concurrent version should have

been admitted.

Chapter 6

Conclusion

This dissertation introduces a noval technique for memory management called linear

pointer and shows that it is a simple, safe, and efficient way to do memory manage-

ment. Its simplicity is due to the fact that it uses existing C++ language constructs

and requires no other extensions to the language. Its safety is due to the fact that it is

based on linear object ownership semantics which is a well-understood programming

discipline. Its efficiency is due to the erasure property that runtime linear checking

can be disabled and will result in a program with identical behavior and no overhead.

A memory allocator is implemented using linear pointer to provide the foundation

of a safe memory management. It also proves that a practical program can be built

using linear pointers and achieves comparable performance to other state of the art

memory allocators. Although other methods exist to ensure memory safety, linear

pointer is the sweet spot that simultaneously achieves simplicity, safety and efficiency.

This work is largely motivated by the need to understand how to use linear own-

ership semantics to reason about volatile invariants required to express non-blocking

algorithms. For future work, I propose that view box in AT S is a possible way

to temporarily freeze volatile invariants, but we require a transactional semantics of

185

closing view box by the compare and swap operation rather than closing it by the

lexical scope.

Appendix A

Comparing Memory Management

Scalability Using Cilk and JCilk

Cilk is a parallel programming language developed at MIT Laboratory of Computer

Science (now Computer Science and Artificial Intelligence Laboratory), as a culmi-

nation of over two decades of research that began with the development of Thinking

Machines Corporation’s Connection Machine CM-5 in 1992, designed by Charles Leis-

erson, Bradley C. Kuszmaul, et al [86, 79]. The CM-5 was a machine connecting on

the order of 256 or more processors, using fat-tree network topology, which structures

the connection like a tree with lower bandwidth connections towards the leaf pro-

cessors and higher bandwidth connections towards the trunk. As many computation

problems use divide and conquer strategy to break down a large problem into smaller

sub-problems, the CM-5 topology is a natural fit to run such computations.

Cilk [17, 73] lends its origin from Parallel Continuation Machine model [61] devel-

oped by Michael Halbherr et al, which implemented a dialect of the C language with

parallel computation in continuation passing style on CM-5. Continuation passing

was first described by John Reynolds [99] and used by Gerald Sussman and Guy Steele

187

Jr. to implement Scheme programming language in 1975 [115, 109]. Cilk improved

upon Parallel Continuation Machine by implementing a work-stealing scheduler that

is proven to be able to complete a parallel execution within a constant factor of

optimal time.

The language improved in usability over the years, most notably adding support

for software shared-memory with relaxed direct acyclic graph (DAG) consistency,

called inlets, which makes computation that involves global data structure easier to

program. Finally, Cilk-5 [52] was an implementation that targeted hardware shared-

memory architecture. A distributed version of Cilk-5 that leverages a cluster of

shared-memory machines with relaxed memory consistency was presented by Keith

Randall [98]. Non-distributed Cilk-5 is the basis of Cilk++ (a dialect of C++) [85]

which is now developed at Intel, as well as JCilk (a dialect of Java) [36, 84, 37] which

continues to be developed at MIT.

In a nutshell, Cilk introduces three main extensions to the C language: a spawn

operation which spins off computation of a sub-problem to a lightweight process,

a sync opertion which waits for the result of a lightweight process, and an abort

operation for cancelling a whole branch of spawned computation, which is useful for

speculative parallelism. A lightweight process is a continuation passing style closure

which represents a unit of work to be distributed among multiple worker threads each

running on its own processor. When a parent lightweight process spawns a child, the

parent’s continuation is placed on a work queue, and the computation proceeds onto

the child. The work queue is a double-ended queue, which means that items can be

pushed and popped from the top like a stack, but the queue also supports a deque

operation that removes an item from the bottom.

In the normal case, when the child computation finishes, the child would simply

return back to the parent, so the work queue behaves like a call stack. While the child

188

is being computed, the most ancient ancestor continuation in the queue (which could

also be the child’s immediate parent) may also be stolen by another idle worker. This

is called work-stealing scheduling, and it is how work is distributed among workers. If

we consider parallel computation as a tree, most computation is carried out in depth

first traversal like a sequential program, except when work is stolen from closer to the

root of the tree. The reason is that work stealing incurs synchronization overhead,

and the fact that child computation is performed first means that this synchronization

overhead is edged outside of the critical path of the computation, which guarantees

the shortest overall running time. This is called work-first principle.

Under the hood, both Cilk and JCilk are source-to-source translators. Cilk con-

verts a program written in the C language with spawn and sync keywords to an

ANSI-C source code that uses Cilk runtime scheduling primitives for creating clo-

sures and manipulating the work queue. JCilk converts a program written in the

Java language with spawn and sync keywords to Java source code extended with the

goto-statement, which is then compiled into Java byte code. This Java byte code can

be executed on any Java virtual machine which already has the jump instruction.

Both Cilk and JCilk implement lightweight processes using continuation passing clo-

sures and work-first principle with work-stealing scheduling. Although C and Java use

different compilation strategies with various levels of optimization, the difference is

normalized away when we consider only scalability but not the absolute performance.

There is a subtle difference in the work queue implementation. Cilk uses the

THE (tail-head-exception) protocol, which avoids the need for both thief and victim

workers to acquire lock for accessing the queue in the common case. The lock is

only acquired when both the thief and the victim are competing to remove the same

continuation from the work queue (i.e. the queue has exactly one item). The pro-

tocol requires the use of memory barrier or sequential consistency memory model in

189

order for both the thief and victim to reliably detect contention, but does not incur

hardware synchronization cost in the common case. Java’s memory model supports

atomic operations which incur hardware synchronization cost but also act as a mem-

ory barrier. This is used by JCilk instead to implement the work queue, so there may

be hardware synchronization cost in the common, non-contention case.

A.1 Description of Memory Management

Methods

Due to the similarity of Cilk and JCilk parallel computing model and scheduling

implementation, they are a convenient dual to compare parallel program scalabity

on manual memory allocation (Cilk) and garbage collection (JCilk). We are mostly

interested in the speed-up when running with multiple workers compared to running

a single worker. Cilk uses an internal allocator. The garbage collector used by

JCilk depends on the Java virtual machine configuration. We used Java 1.7 with the

Parallel collector [114] and Garbage First collector [43]. Here is a brief description of

the memory management methods under the benchmark.

Cilk memory allocation For the purpose of allocating internal data structures,

Cilk uses a layer of memory allocation that caches objects in per-worker free lists (also

per-processor, since Cilk typically starts as many workers as there are processors).

There are 9 object size classes from 24 through 212 bytes in powers of two, and each size

class has its own per-worker free list. Larger objects are obtained from the system’s

malloc(). When the worker’s local free list is exhausted, the worker transfers a

batch of objects from the global free list of the same size class. All global free lists

are protected by one lock, but accessing the global free list should occur relatively

190

infrequently compared to the worker’s local free list. When the global free list is

exhausted, an object of the requested size is carved out of a global pool by bumping

an allocation pointer. The global pool is a region in the sense of region-based memory

management. Objects have no header that might allow the allocator to record the

object size. The pool itself is a collection of 32KB pages, and the pool is extended

32KB at a time when the current page runs out of space. Ultimately, the allocator

allocates the 32KB pages from malloc().

It is notable that Cilk internal free function expects the caller to inform the

allocator the size of the object being freed, since the allocator does not keep a record

of object sizes in a header or by other means. Free simply returns the object back to

the free list of the appropriate size class, but keeps at most a batch size of objects.

Batch size is the same for all object sizes, configurable through a command line flag.

When the free list has more than a batch size number of objects, half of the batch is

transferred to the global free list. On the other hand, during allocation, if the local

free list is exhausted, then half of the batch size number of objects is transferred from

the global free list to the local free list. The global free list grows indefinitely, and

memory used by the global pool is never returned to the system.

This allocator does not actively prevent false sharing. Although objects obtained

in a batch from the global pool are contiguous, they can be dispersed to different

workers during work stealing. When a worker steals objects from various other workers

and subsequently frees the objects to the worker’s local free list, the list now contains

non-contiguous objects, which means that these objects have neighbors in the same

cache line that do not belong to the same worker. Non-contiguousness of objects is

propagated to the global free list when objects are released back from the local free

list. The non-contiguous segment of the global free list can be allocated into a local

free list again and then used by another worker.

191

Parallel collector The parallel collector is the parallelized version of the serial col-

lector. The collector is a stop-the-world generational collector that performs copying

for the young generation, and mark-sweep for the old generation. The only difference

is that the copying and mark-sweep phases are distributed to parallel workers to speed

up collection time. This collector has high throughput although the pause time can

be unpredictable. This is the defualt collector for JVM.

Garbage First collector The Garbage First collector is a generational, concurrent-

marking garbage collector with parallel evacuation. The collector is adaptive to an

“ergonomic policy” tuned by the user to meet memory footprint and pause time, and

throughput goals. The soft real-time pause time constraint is achieved by delimiting

the heap into regions and copying (evacuating) one region at a time. The regions are

conveniently also thread-local allocation buffers so the mutator threads can allocate

memory within their own private regions in parallel. It is notable that Garbage First

does not use size-class free list for allocation. Objects are allocated from the region

using a bump pointer.

Scalability bottleneck is still present whenever the mutator threads are stopped.

First, mutator threads are stopped to mark the roots, but further marking can be

done concurrently afterwards using write barriers. Mutator threads are stopped again

when marking is finished to ensure that there is no more pending marking activities

before evacuation. Mutator threads are also stopped during the evacuation pause,

but evacuation workload is dispatched to multiple workers in parallel, so the main

bottleneck in this phase is the work scheduling implementation.

192

A.2 Scalability Metrics

The parallel structure of the program is the main decider of its scalability. Amdahl

observed that scalability bottleneck is limited by the sequential part of the program

that could not be parallelized [5]. Let 0 ≤ s ≤ 1 be the fraction of the program that

is inherently sequential, and P be the number of parallel processors. For the sake of

argument, assume that total running time on one processor T1 is s+(1−s) = 1 second.

The total running time on P processors is TP = s + 1−s
P

. If P tends to infinity, the

total running time on infinite number of processors is T∞ = s. The maximum possible

speed up on infinite number of processors is T1/T∞ = 1
s
. Blumofe and Leiserson

presented a graph-theoretical method [18] to derive T1 and T∞ when the structure of

the parallel computation is given as a directed acyclic graph. They also derive the

space consumption when running on a single processor S1. The running time TP can

be compared to the running time of the sequential program TS to quantify the benefit

of parallelizing the program. Usually T1 > TS because of the task scheduling runtime

overhead.

In practice, the operating system measures running time in terms of elapsed wall-

clock time τ , user time µ and system time σ, and the space consumption in terms

of max resident set size (maxrss). User time is the amount the program uses for

computation. System time is the amount the operating system spends on behalf of

the program. In the case of computation-heavy program, the system time is typically

spent in scheduling overhead or for making memory available to the program. When

a program is multi-threaded, both user time and system time are the cumulative

time across all threads. The elapsed wall-clock time is simply the time it takes for

the program to run from start to finish. Therefore, the overall number of processors

utilized is P ′ = (µ+ σ)/τ .

193

Scalability bottleneck manifests on a shared-memory multi-processor machine in

both measurable and immeasurable ways. When a thread of computation blocks

waiting for another thread, the operating system does not count the blocked time

towards user time because the blocked thread is not scheduled to run on any processor.

However, this incurs a small amount of scheduling overhead as system time. The

blocking reflects as lower utilization P ′ and is measurable. On the other hand, when

a thread performs a busy-wait (i.e. spins to wait on the result rather than blocking),

or when the memory bus is saturated (i.e. processor’s execution pipeline stalls to wait

for memory bus to become available), both are reflected as part of user time µ that

cannot be easily told apart from the actual time spent on productive computation.

It is worthwhile to note that memory management can increase utilization without

reducing the elapsed wall-clock time. This can happen when the allocator or garbage

collector spawns a separate thread for memory management work while the program

is running. This is the case for all concurrent garbage collectors by definition, but to

one extreme it can be used to speed up single-threaded programs as well by allocating

in a different thread, e.g. Herrmann and Wilsey [66].

A.3 Results

Among the many benchmarks for Cilk and JCilk, the naive Fibonacci sequence pro-

gram is chosen. The program computes the following recursive function as written,

except that in the parallel version, the two recursive calls are run in parallel:

Fib(x) =


x if x ≤ 1,

Fib(x − 1) + Fib(x − 2) otherwise.

194

Apart from the two parallel calls is one comparison, two subtractions and one addition.

This program is an ideal benchmark because it does very little work outside of the

runtime overhead, and it has a predictable parallel structure.

The experiment compares the following variants of the Fibonacci program.

• Fib compiled by Cilk 5.4.6 and GCC 4.3.6.

• Fib compiled by JCilk (2008 release) and Java 1.7.0_02

– Ran with the Parallel Scavenging collector with -XX:MaxNewHeap of

8MB, 16MB, 32MB, and 64MB, as well as unspecified size.

– Ran with the Garbage First collector with unspecified MaxNewHeap size.

Each variant is run with 1, 2, 4, 8, 16, 24, and 32 workers, as well as the sequential

elison “S” which is compiled using the same GCC or Java without making Cilk calls.

The difference between the sequential elison “S” and running with one worker is

that the one-worker version still makes the recursive calls as if they are meant to

be scheduled in parallel, whereas the sequential elison performs a straight non-Cilk

function call.

The results are collected from a 32-core NUMA machine with quad 8-core 2.4GHz

AMDOpteron 6136 processors and 256GB DDR3-1333 RAM, running Scientific Linux

release 6.4 on the 2.6.32-358.6.2.el6.x86_64 kernel. Each run consists of 100 iterations,

and the numbers reported are the means and the standard deviations of the run.

Table A.1 shows the elapsed wall-clock time, and Figure A.1 shows a plot of the

speed up T1/TP based on elapsed wall-clock time. While Cilk is able to achieve near

linear speed-up, all JCilk variants show scalability problems depending on allowed

new heap sizes, with smaller heaps the least scalable and larger heaps more scal-

able for Parallel Scavenging collection. However, Garbage First collector experiences

195

Variant S 1 2 4 8 16 24 32
Cilk 4.5 60.2 29.8 15.0 7.5 3.8 2.5 1.9
± 0.0 0.2 0.2 0.3 0.0 0.0 0.0 0.0

JCilk 8M 7.7 201.8 162.2 144.7 114.5 102.6 114.5 122.4
± 0.2 5.4 44.0 2.2 5.2 1.9 1.8 1.9

JCilk 16M 7.7 154.1 116.5 88.6 72.7 63.1 60.5 63.8
± 0.1 3.0 41.3 11.2 3.5 3.2 1.4 1.2

JCilk 32M 7.7 134.3 98.7 65.7 44.4 38.9 36.9 37.1
± 0.2 1.3 57.6 8.6 2.8 1.3 1.0 0.9

JCilk 64M 7.7 129.0 84.7 54.2 31.3 25.0 23.1 23.1
± 0.1 4.3 31.2 9.2 2.8 0.9 0.3 0.3

JCilk ∞ 7.7 117.2 75.4 38.9 20.4 11.4 8.6 8.1
± 0.0 3.0 37.8 14.5 3.8 1.2 0.7 0.7

JCilk G1 7.7 123.2 72.9 43.9 27.5 22.9 24.8 29.5
± 0.0 3.4 14.7 5.1 2.3 0.6 1.0 0.5

Table A.1: Elapsed wall-clock time.

1 2 4 8 16 32

1

2

4

8

16

32 Cilk
JCilk 8M
JCilk 16M
JCilk 32M
JCilk 64M
JCilk ∞
JCilk G1

Figure A.1: Speed up T1/TP based on elapsed wall-clock time.

196

Variant S 1 2 4 8 16 24 32
Cilk 1.68M 2.69M 2.83M 6.44M 11.8M 22.1M 27.1M 36.8M
± 6.96K 5.58K 5.52K 4.42M 3.83M 4.22M 7.12M 9.21M

JCilk 8M 119M 605M 960M 1.55G 2.52G 3.70G 4.68G 5.56G
± 4.79M 12.1M 10.9M 11.0M 21.1M 59.5M 77.1M 125M

JCilk 16M 118M 404M 552M 851M 1.33G 2.05G 2.52G 3.15G
± 5.17M 4.77M 7.72M 6.57M 10.2M 13.6M 17.2M 46.3M

JCilk 32M 119M 386M 461M 589M 849M 1.23G 1.52G 1.77G
± 4.30M 8.71M 11.6M 10.9M 10.2M 14.2M 13.8M 18.4M

JCilk 64M 120M 467M 495M 555M 684M 874M 1.01G 1.16G
± 3.87M 8.58M 9.29M 8.59M 11.1M 12.9M 11.5M 12.9M

JCilk ∞ 121M 7.10G 17.2G 32.3G 39.7G 40.1G 40.1G 40.1G
± 3.51M 4.40G 8.24G 6.65G 1.35G 32.3M 17.2M 9.89M

JCilk G1 204M 7.44G 8.15G 9.57G 9.01G 10.3G 13.5G 11.5G
± 4.92M 5.52M 3.14G 5.14G 4.50G 5.78G 7.11G 6.51G

Table A.2: Maximum resident set size.

scalability problems even with unspecified new heap sizes.

Although the inner-workings of a garbage collector is difficult to understand, other

metrics can shed lights on what might be causing scalability problems. Table A.2

shows that the garbage collector took advantage of larger heap sizes and used more

memory (above several orders of magnitude!). One can theorize that the collector

does not have to collect as often if it has more memory to use. Indeed, Table A.3

confirms this theory, showing that as heap size increases, the number of seconds

for young generation collection also decreases. This statistics was collected using

-verbosegc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps flags passed to JVM.

None of the runs had incurred collection of the old or permanent heaps. Not only

that more threads used more memory, it also increased variability of memory usage.

This can be seen across the board even with Cilk.

Table A.4 shows the CPU utilization (µ + σ)/τ computed from the user time

µ, system time σ, and the elapsed wall-clock time τ . This provides insight about

197

Variant S 1 2 4 8 16 24 32
JCilk 8M 0.0 50.3 48.3 50.7 55.8 63.9 76.3 79.6

± 0.0 4.1 0.3 0.7 1.0 0.5 1.5 1.9
JCilk 16M 0.0 24.2 24.3 25.1 26.7 29.9 31.9 34.3

± 0.0 0.7 0.4 0.4 0.3 0.6 0.6 0.7
JCilk 32M 0.0 12.4 12.4 15.9 11.3 12.3 12.8 13.2

± 0.0 0.3 0.9 2.7 0.1 0.2 0.2 0.2
JCilk 64M 0.0 7.9 9.0 7.8 5.5 5.4 5.0 4.9

± 0.0 1.7 2.8 0.5 0.4 0.1 0.1 0.2
JCilk ∞ 0.0 0.8 0.3 0.2 0.2 0.1 0.1 0.1

± 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0
JCilk G1 0.0 2.1 2.0 1.9 1.9 1.8 1.8 2.1

± 0.0 0.1 0.1 0.2 0.2 0.1 0.2 0.3

Table A.3: Number of elapsed wall-clock seconds garbage collecting the young gener-
ation.

Variant S 1 2 4 8 16 24 32
Cilk 1.0 1.0 2.0 4.0 8.0 16.0 23.9 31.6
± 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

JCilk 8M 1.0 2.4 3.2 4.7 7.3 10.0 11.4 12.7
± 0.0 0.4 0.2 0.1 0.1 0.1 0.2 0.3

JCilk 16M 1.0 1.8 2.9 4.6 7.2 10.8 12.6 12.7
± 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.2

JCilk 32M 1.0 1.6 2.8 4.9 7.5 11.9 15.2 17.2
± 0.0 0.0 0.2 0.2 0.1 0.2 0.2 0.3

JCilk 64M 1.0 1.4 2.7 4.5 7.5 13.0 17.8 20.7
± 0.0 0.1 0.2 0.1 0.0 0.1 0.2 0.5

JCilk ∞ 1.0 1.0 2.0 3.9 7.7 14.5 20.5 22.8
± 0.0 0.0 0.0 0.1 0.1 0.3 0.4 0.8

JCilk G1 1.0 1.1 2.1 4.1 7.6 13.9 18.6 17.2
± 0.0 0.0 0.0 0.0 0.1 0.3 0.4 0.8

Table A.4: CPU utilization (µ+ σ)/τ .

198

S 1 2 4 8 16 24 32

0.5

1

1.5

2

2.5 Cilk
JCilk 8M
JCilk 16M
JCilk 32M
JCilk 64M
JCilk ∞
JCilk G1

Figure A.2: Utilization normalized to the number of workers.

scalability bottleneck. While Cilk keeps all CPUs almost fully utilized, this is not

the case with JCilk. Our results show that utilization is lower when the new heap

size is smaller and the garbage collector has to work more. Figure A.2 shows the

utilization relative to the number of workers. It shows that garbage collection could

super-utilize CPUs by offloading the work to additional threads, but the advantage

of offloading disappears for 6 or more workers. The lower utilization can be explained

by the stop-the-world synchronization. The more threads there are, the longer is the

wait for all threads to enter the stop state.

A.4 Conclusion

Cilk and JCilk are used to compare memory management scalability because of the

similarity of the scheduling algorithm and programming paradigm. Although Cilk is

compiled as C and JCilk is compiled as Java, both speed-up and utilization normalize

away language differences such as compilation strategy and optimization. The only

controlled difference is memory management.

Cilk uses an internal malloc() and free() based on thread-local free lists, where

199

as JCilk uses Java’s built-in garbage collectors. In our JCilk runs, we varied the

max new heap size of the Parallel Scavenging collector and also compared it against

the Garbage First collector without a max new heap size. We chose the Fibonacci

number benchmark because it performs very little work beside the runtime scheduling

overhead, so it makes an ideal scalability benchmark.

Our results show that garbage collection is the scalability bottleneck. By lowering

new heap size, garbage collection does more work, and it impaired both speed-up as

well as utilization.

Appendix B

Linear Pointer in C++11

The work on this dissertation predated C++11 which introduced new constructs

that could streamline the implementation of linear pointer. Most notably, rvalue

constructor and rvalue assignment allow moving linear ownership from a temporary

pointer, e.g. one that is returned from a function call. This eliminated the need

to introduce an intermediary reference type as well as reference construction and

assignment. C++11 also introduced atomic primitives that allow a linear pointer to

feature atomic operations more easily. This appendix gives a listing of the streamlined

linear atomic pointer using C++11 features.
1 #include <atomic>
2 #include <cassert>
3

4 template<typename Tp>
5 struct value_traits {
6 typedef Tp value_type;
7 static const Tp nil;
8 static const Tp invalid;
9 };

10

11 template<typename Tp>
12 const Tp value_traits<Tp>::nil = (Tp) 0lu;
13

201

14 template<typename Tp>
15 const Tp value_traits<Tp>::invalid = (Tp) ~0lu << 12;
16

17 template<
18 typename Tp,
19 class Traits = value_traits<Tp *> >
20 class linear_ptr : protected Traits {
21 protected:
22 using Traits::nil;
23 using Traits::invalid;
24

25 public:
26 typedef Tp element_type;
27 typedef Tp * pointer;
28

29 explicit linear_ptr(pointer q = nil) throw()
30 : p(q) {}
31 linear_ptr(linear_ptr& that) throw()
32 : p(that.get()) {}
33 linear_ptr(linear_ptr&& that) throw()
34 : p(that.get()) {}
35

36 ~linear_ptr() throw() {
37 assert(this->p == invalid || this->p == nil);
38 }
39

40 linear_ptr& operator=(linear_ptr& that) throw() {
41 this->reset(that.get()); return *this;
42 }
43

44 linear_ptr& operator=(linear_ptr&& that) throw() {
45 this->reset(that.get()); return *this;
46 }
47

48 operator bool() const volatile throw() {
49 assert(this->p != invalid);
50 return this->p != nil;
51 }
52

53 pointer get() throw() {
54 #if NDEBUG
55 return this->p;

202

56 #else
57 assert(this->p != invalid);
58 pointer q = this->p;
59 this->p = invalid;
60 return q;
61 #endif
62 }
63

64 pointer release() throw() {
65 assert(this->p != invalid);
66 pointer q = this->p;
67 this->p = nil;
68 return q;
69 }
70

71 void reset(pointer q = nil) throw() {
72 assert(this->p == invalid || this->p == nil);
73 this->p = q;
74 }
75

76 Tp& operator*() const throw() { return *this->p; }
77 Tp* operator->() const throw() { return this->p; }
78

79 // Support for atomic operations.
80

81 typedef void *expected_type;
82

83 expected_type expected() volatile throw() {
84 return static_cast<expected_type>(this->p);
85 }
86

87 void reset(expected_type expected) throw() {
88 this->reset(static_cast<pointer>(expected));
89 }
90

91 pointer release() volatile throw() {
92 pointer q = this->p.exchange(nil);
93 return q;
94 }
95

96 bool cswap(linear_ptr& that, expected_type expected)
97 volatile throw() {

203

98 assert(that.p != invalid);
99 pointer old = static_cast<pointer>(expected);

100 if (this->p.compare_exchange_weak(old, that.p)) {
101 that.p = old;
102 return true;
103 }
104 return false;
105 }
106

107 void swap(linear_ptr& that) volatile throw() {
108 assert(that.p != invalid);
109 pointer q = this->p.exchange(that.p);
110 that.p = q;
111 }
112

113 protected:
114 std::atomic<pointer> p;
115 };

List of Journal Abbreviations

ACM Association for Computing Machinery

AFIPS American Federation of Information Processing Societies

CASES Compilers, Architecture, and Synthesis for Embedded Systems (ACM)

CISIS Complex, Intelligent and Software Intensive Systems

ESA European Symposium on Algorithms

FPCA Functional Programming and Computer Architecture (ACM SIGPLAN)

ICECCS International Conference on Engineering of Complex Computer Systems

(IEEE)

ICTAC International Colloquium on Theoretical Aspects of Computing (UNU-IIST)

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

ISMM International Symposium on Memory Management (ACM SIGPLAN)

ISO International Organization for Standardization

LCS Laboratory for Computer Science (MIT)

205

MFPS Mathematical Foundations of Programming Semantics

MIT Massachusetts Institute of Technology

PEPM Partial Evaluation and Program Manipulation (ACM SIGPLAN)

PLDI Programming Language Design and Implementation (ACM SIGPLAN)

PLOS Programming Languages and Operating Systems (ACM SIGOPS)

PLPV Programming Languages meet Program Verification

POPL Principles of Programming Languages (ACM SIGPLAN-SIGACT)

SFCS Symposium on Foundations of Computer Science (IEEE)

SIGACT Special Interest Group on Algorithms and Computation Theory (ACM)

SIGARCH Special Interest Group on Computer Architecture (ACM)

SIGOPS Special Interest Group on Operating Systems (ACM)

SIGPLAN Special Interest Group on Programming Languages (ACM)

SIGSOFT Special Interest Group on Software Engineering (ACM)

SPAA Symposium on Parallel Algorithms and Architectures (ACM)

STOC Symposium on Theory of Computing (ACM)

UNU-IIST International Institute for Software Technology of the United Nations

University

USENIX The Advanced Computing Systems Association (formerly: Unix Users

Group)

Bibliography

[1] GNU C library. http://sourceware.org/git/?p=glibc.git.

[2] Boost C++ libraries smart pointers. http://www.boost.org/libs/smart_

ptr, March 2009.

[3] Samson Abramsky. Computational interpretations of linear logic. Theoretical

Computer Science, 111(1-2):3–57, 1993.

[4] G. M. Adel’son-Vel’skij and Y. M. Landis. An algorithm for the organization

of information. Doklady Akademii Nauk USSR, 16(2):263–266, 1962. also avail-

able in translation as Soviet Mathematics: Doklady, published by American

Mathematical Society, ISBN 0197-6788.

[5] Gene M. Amdahl. Validity of the single processor approach to achieving large

scale computing capabilities. In Proceedings of the April 18-20, 1967, spring

joint computer conference, AFIPS ’67 (Spring), pages 483–485, New York, NY,

USA, 1967. ACM.

[6] Todd A. Anderson. Optimizations in a private nursery-based garbage collector.

In Proceedings of the 2010 international symposium on Memory management,

ISMM ’10, pages 21–30, New York, NY, USA, 2010. ACM.

http://sourceware.org/git/?p=glibc.git
http://www.boost.org/libs/smart_ptr
http://www.boost.org/libs/smart_ptr

207

[7] Andrew W. Appel. Modern compiler implementation in ML: basic techniques.

Cambridge University Press, New York, NY, USA, 1997.

[8] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling

for multiprogrammed multiprocessors. In Proceedings of the tenth annual ACM

symposium on Parallel algorithms and architectures, SPAA ’98, pages 119–129,

New York, NY, USA, 1998. ACM.

[9] Henry G. Baker. Lively linear lisp: “look ma, no garbage!”. SIGPLAN Notices,

27:89–98, August 1992.

[10] Henry G. Baker. Linear logic and permutation stacks—the forth shall be first.

SIGARCH Computer Architecture News, 22:34–43, March 1994.

[11] Henry G. Baker. A “linear logic” quicksort. SIGPLAN Notices, 29:13–18,

February 1994.

[12] Henry G. Baker. “use-once” variables and linear objects: storage management,

reflection and multi-threading. SIGPLAN Notices, 30:45–52, January 1995.

[13] Henry G. Baker, Jr. List processing in real time on a serial computer. Commu-

nications of the ACM, 21:280–294, April 1978.

[14] J. E. Barnes and P. Hut. Error analysis of a tree code. Astrophysical Journal

Supplement Series, 70:389–417, June 1989.

[15] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wil-

son. Hoard: a scalable memory allocator for multithreaded applications. SIG-

PLAN Notices, 35:117–128, November 2000.

208

[16] Yves Bertot and Pierre Castran. Interactive Theorem Proving and Program

Development: Coq’Art The Calculus of Inductive Constructions. Springer Pub-

lishing Company, Incorporated, 1st edition, 2010.

[17] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.

Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: an efficient multithreaded

runtime system. SIGPLAN Notices, 30:207–216, August 1995.

[18] Robert D. Blumofe and Charles E. Leiserson. Space-efficient scheduling of mul-

tithreaded computations. In Proceedings of the twenty-fifth annual ACM sym-

posium on Theory of computing, STOC ’93, pages 362–371, New York, NY,

USA, 1993. ACM.

[19] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncooperative

environment. Software: Practice and Experience, 18(9):807–820, 1988.

[20] Derek Bruening and Qin Zhao. Practical memory checking with dr. memory. In

Proceedings of the 9th Annual IEEE/ACM International Symposium on Code

Generation and Optimization, CGO ’11, pages 213–223, Washington, DC, USA,

2011. IEEE Computer Society.

[21] Randal E. Bryant and David R. O’Hallaron. Computer Systems: A Program-

mer’s Perspective. Addison-Wesley Publishing Company, USA, 2nd edition,

2010.

[22] James Burns and Nancy A. Lynch. Mutual exclusion using invisible reads and

writes. In In Proceedings of the 18th Annual Allerton Conference on Commu-

nication, Control, and Computing, pages 833–842, 1980.

209

[23] James E. Burns. Symmetry in systems of asynchronous processes. In Founda-

tions of Computer Science, 1981. SFCS ’81. 22nd Annual Symposium on, pages

169–174, oct. 1981.

[24] C. J. Cheney. A nonrecursive list compacting algorithm. Communications of

the ACM, 13:677–678, November 1970.

[25] Jawahar Chirimar, Carl A. Gunter, and Jon G. Riecke. Proving memory man-

agement invariants for a language based on linear logic. SIGPLAN Lisp Point-

ers, V:139–150, January 1992.

[26] Jawahar Chirimar, Carl A. Gunter, and Jon G. Riecke. Reference counting as

a computational interpretation of linear logic. Journal of Functional Program-

ming, 6(02):195–244, 1996.

[27] Marshall Cline. C++ FAQ. http://www.parashift.com/c++-faq/, July 2004.

[28] Jacques Cohen and Alexandru Nicolau. Comparison of compacting algorithms

for garbage collection. ACM Transactions on Programming Languages and Sys-

tems, 5:532–553, October 1983.

[29] George E. Collins. A method for overlapping and erasure of lists. Communica-

tions of the ACM, 3:655–657, December 1960.

[30] Gregory Colvin. Exception safe smart pointers. Technical Report 94-

168/N0555, C++ committee document, July 1994.

[31] R. Colvin and L. Groves. Formal verification of an array-based nonblocking

queue. In Engineering of Complex Computer Systems, 2005. ICECCS 2005.

Proceedings. 10th IEEE International Conference on, pages 507–516, june 2005.

http://www.parashift.com/c++-faq/

210

[32] James O. Coplien. Curiously recurring template patterns. In C++ gems, pages

135–144. SIGS Publications, Inc., New York, NY, USA, 1996.

[33] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.

Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[34] Karl Crary, David Walker, and Greg Morrisett. Typed memory management in

a calculus of capabilities. In Proceedings of the 26th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, POPL ’99, pages 262–275,

New York, NY, USA, 1999. ACM.

[35] David E. Culler, Anoop Gupta, and Jaswinder Pal Singh. Parallel Computer

Architecture: A Hardware/Software Approach. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 1st edition, 1997.

[36] John S. Danaher. The JCilk-1 runtime system. Master’s thesis, Massachusetts

Institute of Technology Department of Electrical Engineering and Computer

Science, June 2005.

[37] John S. Danaher, I.-Ting Angelina Lee, and Charles E. Leiserson. Program-

ming with exceptions in jcilk. Science of Computer Programming, 63:147–171,

December 2006.

[38] Matthew Danish and Hongwei Xi. Operating system development with ats:

work in progress. In Proceedings of the 4th ACM SIGPLAN workshop on Pro-

gramming languages meets program verification, PLPV ’10, pages 9–14, New

York, NY, USA, 2010. ACM.

[39] Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in low-

level software. In Proceedings of the ACM SIGPLAN 2001 conference on Pro-

211

gramming language design and implementation, PLDI ’01, pages 59–69, New

York, NY, USA, 2001. ACM.

[40] Peter J. Denning. The working set model for program behavior. Communica-

tions of the ACM, 11:323–333, May 1968.

[41] Peter J. Denning. Virtual memory. ACM Computing Surveys, 2:153–189,

September 1970.

[42] Peter J. Denning. The locality principle. Communications of the ACM, 48:19–

24, July 2005.

[43] David Detlefs, Christine Flood, Steve Heller, and Tony Printezis. Garbage-

first garbage collection. In Proceedings of the 4th international symposium on

Memory management, ISMM ’04, pages 37–48, New York, NY, USA, 2004.

ACM.

[44] E. W. Dijkstra. Solution of a problem in concurrent programming control.

Communications of the ACM, 8(9):569–, September 1965.

[45] Edsger Dijkstra, Leslie Lamport, A. Martin, C. Scholten, and E. Steffens. On-

the-fly darbage collection: an exercise in cooeration. In Friedrich Bauer, E. Di-

jkstra, A. Ershov, M. Griffiths, C. Hoare, W. Wulf, and Klaus Samelson, editors,

Language Hierarchies and Interfaces, volume 46 of Lecture Notes in Computer

Science, pages 43–56. Springer Berlin / Heidelberg, 1976. 10.1007/3-540-07994-

7_48.

[46] Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M.

Steffens. On-the-fly garbage collection: an exercise in cooperation. Communi-

cations of the ACM, 21:966–975, November 1978.

212

[47] Ulrich Drepper. ELF handling for thread-local storage. http://www.akkadia.

org/drepper/tls.pdf, December 2005.

[48] Jason Evans. A scalable concurrent malloc(3) implementation for

FreeBSD. http://people.freebsd.org/~jasone/jemalloc/bsdcan2006/

jemalloc.pdf, 2006.

[49] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen Hunt,

James R. Larus, and Steven Levi. Language support for fast and reliable

message-based communication in singularity os. In Proceedings of the 1st ACM

SIGOPS/EuroSys European Conference on Computer Systems 2006, EuroSys

’06, pages 177–190, New York, NY, USA, 2006. ACM.

[50] Manuel Fahndrich and Robert DeLine. Adoption and focus: practical linear

types for imperative programming. SIGPLAN Notices, 37:13–24, May 2002.

[51] Robert R. Fenichel and Jerome C. Yochelson. A lisp garbage-collector for

virtual-memory computer systems. Communications of the ACM, 12:611–612,

November 1969.

[52] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation

of the cilk-5 multithreaded language. SIGPLAN Notices, 33:212–223, May 1998.

[53] Sanjay Ghemawat and Paul Menage. TCMalloc : Thread-caching malloc. http:

//goog-perftools.sourceforge.net/doc/tcmalloc.html.

[54] Lokesh Gidra, Gaël Thomas, Julien Sopena, and Marc Shapiro. Assessing the

scalability of garbage collectors on many cores. In Proceedings of the 6th Work-

shop on Programming Languages and Operating Systems, PLOS ’11, pages 7:1–

7:5, New York, NY, USA, 2011. ACM.

http://www.akkadia.org/drepper/tls.pdf
http://www.akkadia.org/drepper/tls.pdf
http://people.freebsd.org/~jasone/jemalloc/bsdcan2006/jemalloc.pdf
http://people.freebsd.org/~jasone/jemalloc/bsdcan2006/jemalloc.pdf
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html

213

[55] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101,

1987.

[56] Jean-Yves Girard. Linear logic: its syntax and semantics. In Proceedings of the

workshop on Advances in linear logic, pages 1–42, New York, NY, USA, 1995.

Cambridge University Press.

[57] James Gosling and Henry McGilton. The Java language environment: White

paper. http://java.sun.com/docs/white/langenv/, May 1996.

[58] Michael Greenwald. Non-blocking Synchronization and System Design.

PhD thesis, Stanford University, Department of Computer Science, August

1999. Technical report CS-TR-99-1624. Also available as http://infolab.

stanford.edu/pub/cstr/reports/cs/tr/99/1624/CS-TR-99-1624.pdf.

[59] Dirk Grunwald and Benjamin Zorn. Customalloc: Efficient synthesized memory

allocators. Software: Practice and Experience, 23(8):851–869, 1993.

[60] Leo J. Guibas and Robert Sedgewick. A dichromatic framework for balanced

trees. Foundations of Computer Science, IEEE Annual Symposium on, 0:8–21,

1978.

[61] Michael Halbherr, Yuli Zhou, and Chris F. Joerg. MIMD-style parallel pro-

gramming with continuation-passing threads. In Proceedings of the 2nd Inter-

national Workshop on Massive Parallelism: Hardware, Software, and Applica-

tions, Capri, Italy, September 1994.

[62] Timothy Harris. A pragmatic implementation of non-blocking linked-lists.

In Jennifer Welch, editor, Distributed Computing, volume 2180 of Lecture

http://java.sun.com/docs/white/langenv/
http://infolab.stanford.edu/pub/cstr/reports/cs/tr/99/1624/CS-TR-99-1624.pdf
http://infolab.stanford.edu/pub/cstr/reports/cs/tr/99/1624/CS-TR-99-1624.pdf

214

Notes in Computer Science, pages 300–314. Springer Berlin / Heidelberg, 2001.

10.1007/3-540-45414-4_21.

[63] Timothy Harris, Keir Fraser, and Ian Pratt. A practical multi-word compare-

and-swap operation. In Dahlia Malkhi, editor, Distributed Computing, volume

2508 of Lecture Notes in Computer Science, pages 265–279. Springer Berlin /

Heidelberg, 2002. 10.1007/3-540-36108-1_18.

[64] Reed Hastings and Bob Joyce. Purify: Fast detection of memory leaks and

access errors. In In Proceedings of the Winter 1992 USENIX Conference, pages

125–138, 1991.

[65] Danny Hendler, Yossi Lev, Mark Moir, and Nir Shavit. A dynamic-sized

nonblocking work stealing deque. Distributed Computing, 18:189–207, 2006.

10.1007/s00446-005-0144-5.

[66] E.C. Herrmann and P.A. Wilsey. Threaded dynamic memory management in

many-core processors. In Complex, Intelligent and Software Intensive Systems

(CISIS), 2010 International Conference on, pages 931–936, feb. 2010.

[67] Matthew Hertz and Emery D. Berger. Quantifying the performance of garbage

collection vs. explicit memory management. SIGPLAN Notices, 40:313–326,

October 2005.

[68] Matthew Hertz, Yi Feng, and Emery D. Berger. Garbage collection without

paging. In Proceedings of the 2005 ACM SIGPLAN conference on Programming

language design and implementation, PLDI ’05, pages 143–153, New York, NY,

USA, 2005. ACM.

215

[69] Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Experience

with safe manual memory-management in cyclone. In Proceedings of the 4th

international symposium on Memory management, ISMM ’04, pages 73–84,

New York, NY, USA, 2004. ACM.

[70] Sören Holmström. A linear functional language. In Thomas Johnsson, Si-

mon L Peyton Jones, and Kent Karlsson, editors, Workshop on Implementa-

tion of Lazy Functional Languages, Göteborg, Sweden, 1988. Chalmers tekniska

högskola, Programming Methodology Group.

[71] ISO. ISO/IEC 14882:1998: Programming languages — C++. International

Organization for Standardization, Geneva, Switzerland, September 1998. Avail-

able in electronic form for online purchase at http://webstore.ansi.org/ and

http://www.cssinfo.com/.

[72] ISO. ISO/IEC 14882:2011 Information technology — Programming languages

— C++. International Organization for Standardization, Geneva, Switzerland,

February 2012.

[73] Christopher F. Joerg. The Cilk System for Parallel Multithreaded Comput-

ing. PhD thesis, Department of Electrical Engineering and Computer Sci-

ence, Massachusetts Institute of Technology, Cambridge, Massachusetts, Jan-

uary 1996. Available as MIT Laboratory for Computer Science Technical Report

MIT/LCS/TR-701.

[74] Richard Jones, Antony Hosking, and Eliot Moss. The garbage collection hand-

book : the art of automatic memory management. Chapman & Hall, London,

2011.

216

[75] Richard Jones and Rafael Lins. Garbage collection : algorithms for automatic

dynamic memory management. Wiley, Chichester [u.a.], 1999.

[76] Poul-Henning Kamp. Malloc(3) revisited. http://phk.freebsd.dk/pubs/

malloc.pdf, January 2004.

[77] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,

Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael

Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. sel4: formal

verification of an os kernel. In Proceedings of the ACM SIGOPS 22nd symposium

on Operating systems principles, SOSP ’09, pages 207–220, New York, NY,

USA, 2009. ACM.

[78] Donald E. Knuth. The art of computer programming, volume 2 (3rd ed.):

seminumerical algorithms. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1997.

[79] Bradley C. Kuszmaul. Synchronized MIMD Computing. PhD thesis, Depart-

ment of Electrical Engineering and Computer Science, Massachusetts Institute

of Technology, May 1994. Available as MIT Laboratory for Computer Science

Technical Report MIT/LCS/TR-645.

[80] Yves Lafont. The linear abstract machine. Theoretical Computer Science, 59(1-

2):157 – 180, 1988.

[81] Leslie Lamport. A new solution of dijkstra’s concurrent programming problem.

Communications of the ACM, 17(8):453–455, August 1974.

http://phk.freebsd.dk/pubs/malloc.pdf
http://phk.freebsd.dk/pubs/malloc.pdf

217

[82] Rick Lavoie and Hongwei Xi. Garbage collector for ATS. https://ats-lang.

svn.sourceforge.net/svnroot/ats-lang/trunk/ccomp/runtime/GCATS0/,

July 2007.

[83] Rick Lavoie and Hongwei Xi. Garbage collection in ATS. https://ats-lang.

svn.sourceforge.net/svnroot/ats-lang/trunk/ccomp/runtime/GCATS1/,

June 2008.

[84] I-Ting Angelina Lee. The JCilk multithreaded language. Master’s thesis, Mas-

sachusetts Institute of Technology Department of Electrical Engineering and

Computer Science, August 2005.

[85] Charles Leiserson. The Cilk++ concurrency platform. The Journal of Super-

computing, 51:244–257, 2010. 10.1007/s11227-010-0405-3.

[86] Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feynman,

Mahesh N. Ganmukhi, Jeffrey V. Hill, Daniel Hillis, Bradley C. Kuszmaul,

Margaret A. St. Pierre, David S. Wells, Monica C. Wong, Shaw-Wen Yang,

and Robert Zak. The network architecture of the connection machine cm-5

(extended abstract). In Proceedings of the fourth annual ACM symposium on

Parallel algorithms and architectures, SPAA ’92, pages 272–285, New York, NY,

USA, 1992. ACM.

[87] Henry Lieberman and Carl Hewitt. A real-time garbage collector based on the

lifetimes of objects. Communications of the ACM, 26:419–429, June 1983.

[88] Likai Liu. Mac OS X thread local storage. http://lifecs.likai.org/2010/

05/mac-os-x-thread-local-storage.html, May 2010.

https://ats-lang.svn.sourceforge.net/svnroot/ats-lang/trunk/ccomp/runtime/GCATS0/
https://ats-lang.svn.sourceforge.net/svnroot/ats-lang/trunk/ccomp/runtime/GCATS0/
https://ats-lang.svn.sourceforge.net/svnroot/ats-lang/trunk/ccomp/runtime/GCATS1/
https://ats-lang.svn.sourceforge.net/svnroot/ats-lang/trunk/ccomp/runtime/GCATS1/
http://lifecs.likai.org/2010/05/mac-os-x-thread-local-storage.html
http://lifecs.likai.org/2010/05/mac-os-x-thread-local-storage.html

218

[89] R. A. MacKinnon. Advanced function extended with tightly-coupled multipro-

cessing. IBM Systems Journal, 13(1):32–59, 1974.

[90] John Maraist, Martin Odersky, David N. Turner, and Philip Wadler. Call-by-

name, call-by-value, call-by-need and the linear lambda calculus. Electronic

Notes in Theoretical Computer Science, 1:370–392, 1995.

[91] Nicolas Marti, Reynald Affeldt, and Akinori Yonezawa. Formal verification of

the heap manager of an operating system using separation logic. In Zhiming

Liu and Jifeng He, editors, Formal Methods and Software Engineering, volume

4260 of Lecture Notes in Computer Science, pages 400–419. Springer Berlin

Heidelberg, 2006.

[92] John McCarthy. Recursive functions of symbolic expressions and their compu-

tation by machine, part i. Communications of the ACM, 3(4):184–195, April

1960.

[93] Marvin Minsky. A lisp garbage collector algorithm using serial secondary stor-

age. Technical report, Cambridge, MA, USA, 1963.

[94] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: a

proof assistant for higher-order logic. Springer-Verlag, Berlin, Heidelberg, 2002.

[95] Chris Okasaki. Purely functional data structures. Cambridge University Press,

1999.

[96] Oracle Inc. Java SE 6 HotSpotTM virtual machine garbage collection tuning.

http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.

html. Accessed on December 28, 2011.

http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html

219

[97] Benjamin C. Pierce. Types and Programming Languages. MIT Press, Cam-

bridge, MA, USA, 2002.

[98] Keith H. Randall. Cilk: Efficient Multithreaded Computing. PhD thesis, Depart-

ment of Electrical Engineering and Computer Science, Massachusetts Institute

of Technology, May 1998.

[99] John C. Reynolds. Definitional interpreters for higher-order programming lan-

guages. In Proceedings of the ACM annual conference - Volume 2, ACM ’72,

pages 717–740, New York, NY, USA, 1972. ACM.

[100] Scott Schneider, Christos D. Antonopoulos, and Dimitrios S. Nikolopoulos.

Scalable locality-conscious multithreaded memory allocation. In Proceedings

of the 5th international symposium on Memory management, ISMM ’06, pages

84–94, New York, NY, USA, 2006. ACM.

[101] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry

Vyukov. Addresssanitizer: A fast address sanity checker. In Proceedings of the

2012 USENIX Conference on Annual Technical Conference, USENIX ATC’12,

pages 28–28, Berkeley, CA, USA, 2012. USENIX Association.

[102] Julian Seward and Nicholas Nethercote. Using valgrind to detect undefined

value errors with bit-precision. In Proceedings of the annual conference on

USENIX Annual Technical Conference, ATEC ’05, pages 2–2, Berkeley, CA,

USA, 2005. USENIX Association.

[103] Chien-Hua Shann, Ting-Lu Huang, and Cheng Chen. A practical nonblocking

queue algorithm using compare-and-swap. In Parallel and Distributed Systems,

2000. Proceedings. Seventh International Conference on, pages 470–475, 2000.

220

[104] Rui Shi, Dengping Zhu, and Hongwei Xi. A modality for safe resource sharing

and code reentrancy. In Ana Cavalcanti, David Deharbe, Marie-Claude Gaudel,

and Jim Woodcock, editors, Theoretical Aspects of Computing – ICTAC 2010,

volume 6255 of Lecture Notes in Computer Science, pages 382–396. Springer

Berlin / Heidelberg, 2010. 10.1007/978-3-642-14808-8_26.

[105] Fridtjof Siebert. Concurrent, parallel, real-time garbage-collection. In Proceed-

ings of the 2010 international symposium on Memory management, ISMM ’10,

pages 11–20, New York, NY, USA, 2010. ACM.

[106] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search

trees. Journal of the ACM, 32:652–686, July 1985.

[107] Yannis Smaragdakis and Don Batory. Mixin-based programming in C++. In

Greg Butler and Stan Jarzabek, editors, Generative and Component-Based Soft-

ware Engineering, volume 2177 of Lecture Notes in Computer Science, pages

164–178. Springer Berlin / Heidelberg, 2001. 10.1007/3-540-44815-2_12.

[108] Frederick Smith, David Walker, and Greg Morrisett. Alias types. In Gert

Smolka, editor, Programming Languages and Systems, volume 1782 of Lecture

Notes in Computer Science, pages 366–381. Springer Berlin / Heidelberg, 2000.

10.1007/3-540-46425-5_24.

[109] Guy L Steele and Gerald J Sussman. Lambda: The ultimate imperative. Tech-

nical report, Cambridge, MA, USA, 1976.

[110] Bjarne Stroustrup. Exception safety: Concepts and techniques. In Alexander

Romanovsky, Christophe Dony, Jørgen Knudsen, and Anand Tripathi, editors,

Advances in Exception Handling Techniques, volume 2022 of Lecture Notes in

221

Computer Science, pages 60–76. Springer Berlin / Heidelberg, 2001. 10.1007/3-

540-45407-1_4.

[111] Dmitri B. Strukov, Gregory S. Snider, Duncan R. Stewart, and R. Stanley

Williams. The missing memristor found. Nature, 453(7191):80–83, May 2008.

[112] P. Stygar. LISP 2 garbage collector specification. Technical Report TM-

3417/500/00, System Development Corporation, Santa Monica, California,

April 1967.

[113] Yulei Sui, Ding Ye, and Jingling Xue. Static memory leak detection using full-

sparse value-flow analysis. In Proceedings of the 2012 International Symposium

on Software Testing and Analysis, ISSTA 2012, pages 254–264, New York, NY,

USA, 2012. ACM.

[114] Sun Microsystems. Memory management in the Java HotSpot vir-

tual machine. http://www.oracle.com/technetwork/java/javase/

memorymanagement-whitepaper-150215.pdf, April 2006.

[115] Gerald J Sussman and Guy L Steele. SCHEME: an interpreter for extended

lambda calculus. Technical report, Cambridge, MA, USA, 1975.

[116] Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. A retro-

spective on region-based memory management. Higher-Order and Symbolic

Computation, 17:245–265, 2004. 10.1023/B:LISP.0000029446.78563.a4.

[117] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. In-

formation and Computation, 132(2):109 – 176, 1997.

[118] Harvey Tuch, Gerwin Klein, and Michael Norrish. Types, bytes, and separation

logic. SIGPLAN Notices, 42(1):97–108, January 2007.

http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf
http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf

222

[119] Harvey Tuch, Gerwin Klein, and Michael Norrish. Verification of the l4

kernel memory allocator. http://www.ertos.nicta.com.au/research/l4.

verified/document-recent.pdf, August 2008.

[120] David N. Turner and Philip Wadler. Operational interpretations of linear logic.

Theoretical Computer Science, 227(1-2):231–248, 1999.

[121] David N. Turner, Philip Wadler, and Christian Mossin. Once upon a type. In

FPCA, pages 1–11, 1995.

[122] David Ungar. Generation scavenging: A non-disruptive high performance stor-

age reclamation algorithm. SIGSOFT Software Engineering Notes, 9:157–167,

April 1984.

[123] David Ungar and Frank Jackson. An adaptive tenuring policy for generation

scavengers. ACM Transactions on Programming Languages and Systems, 14:1–

27, January 1992.

[124] Philip Wadler. Linear types can change the world! In PROGRAMMING

CONCEPTS AND METHODS, Amsterdam, 1990. North Holland.

[125] Philip Wadler. Is there a use for linear logic? In PEPM, pages 255–273, 1991.

[126] Philip Wadler. There’s no substitute for linear logic. http://homepages.inf.

ed.ac.uk/wadler/topics/linear-logic.html#linearsub, 1992.

[127] Philip Wadler. A syntax for linear logic. In Stephen D. Brookes, Michael G.

Main, Austin Melton, Michael W. Mislove, and David A. Schmidt, editors,

MFPS, volume 802 of Lecture Notes in Computer Science, pages 513–529.

Springer, 1993.

http://www.ertos.nicta.com.au/research/l4.verified/document-recent.pdf
http://www.ertos.nicta.com.au/research/l4.verified/document-recent.pdf
http://homepages.inf.ed.ac.uk/wadler/topics/linear-logic.html#linearsub
http://homepages.inf.ed.ac.uk/wadler/topics/linear-logic.html#linearsub

223

[128] David Walker and Greg Morrisett. Alias types for recursive data structures. In

Robert Harper, editor, Types in Compilation, volume 2071 of Lecture Notes

in Computer Science, pages 177–206. Springer Berlin / Heidelberg, 2001.

10.1007/3-540-45332-6_7.

[129] David Walker and Kevin Watkins. On regions and linear types (extended ab-

stract). SIGPLAN Notices, 36:181–192, October 2001.

[130] Paul Wilson. Uniprocessor garbage collection techniques. In Yves Bekkers

and Jacques Cohen, editors, Memory Management, volume 637 of Lecture

Notes in Computer Science, pages 1–42. Springer Berlin / Heidelberg, 1992.

10.1007/BFb0017182.

[131] Paul Wilson, Mark Johnstone, Michael Neely, and David Boles. Dynamic stor-

age allocation: A survey and critical review. In Henry Baler, editor, Memory

Management, volume 986 of Lecture Notes in Computer Science, pages 1–116.

Springer Berlin / Heidelberg, 1995. 10.1007/3-540-60368-9_19.

[132] Hongwei Xi. A garbage collector for multithreaded programming in

ATS. https://ats-lang.svn.sourceforge.net/svnroot/ats-lang/trunk/

ccomp/runtime/GCATS2/, October 2009.

[133] Hongwei Xi. An implementation of functional maps based on splay trees.

https://ats-lang.svn.sourceforge.net/svnroot/ats-lang/contrib/

linmap_splaytree_ngc/linmap_splaytree_ngc.dats, August 2009.

[134] Hongwei Xi. Introduction to programming in ATS. http://www.ats-lang.

org/DOCUMENT/INTPROGINATS/PDF/main.pdf, 2010–20??

https://ats-lang.svn.sourceforge.net/svnroot/ats-lang/trunk/ccomp/runtime/GCATS2/
https://ats-lang.svn.sourceforge.net/svnroot/ats-lang/trunk/ccomp/runtime/GCATS2/
https://ats-lang.svn.sourceforge.net/svnroot/ats-lang/contrib/linmap_splaytree_ngc/linmap_splaytree_ngc.dats
https://ats-lang.svn.sourceforge.net/svnroot/ats-lang/contrib/linmap_splaytree_ngc/linmap_splaytree_ngc.dats
http://www.ats-lang.org/DOCUMENT/INTPROGINATS/PDF/main.pdf
http://www.ats-lang.org/DOCUMENT/INTPROGINATS/PDF/main.pdf

224

[135] Dengping Zhu and Hongwei Xi. Safe programming with pointers through state-

ful views. In Manuel Hermenegildo and Daniel Cabeza, editors, Practical As-

pects of Declarative Languages, volume 3350 of Lecture Notes in Computer

Science, pages 83–97. Springer Berlin / Heidelberg, 2005. 10.1007/978-3-540-

30557-6_8.

Vita

Likai Liu was born in Taipei, Taiwan in 1982. During his undergraduate years at

Boston University from 2000 through 2004, he became involved in the programming

language research group in the Department of Computer Science. He first studied

under Professor Hongwei Xi in the summer of 2002, contributing to Xanadu, an imper-

ative programming language featuring Dependent Types. He studied under Professor

Assaf Kfoury in the summer of 2003, working on System Iω, which is a type inference

algorithm for Lambda Calculus using expansion variables and intersection types with

special ω type assigned to unused program variables. Around this time, intrigued by

the theoretical remification of unused program resources, he began studying Linear

Logic.

In his first graduate school years at Boston University from 2004 through 2008,

he worked under the iBench initiative, supervised by Professor Assaf Kfoury and

Professor Azer Bestavros, and supported by NSF grants ITR ANI-0205294, ANI-

0095988, ANI-9986397, and EIA-0202067. He developed the type system and type

inference for Traffic, a declarative language for specifying global flows of network

systems.

Since 2008, Likai began to study parallel programming on shared memory com-

puters, lock-free wait-free algorithms, and memory management. This dissertation is

a culmination of his work since 2008.

226

He also writes a blog titled Life of a Computer Scientist (http://lifecs.likai.

org), where he posts a garden variety mix of ideas, micro research results, commentary

on other people’s research work, as well as notes on using software and configuring

computer systems.

http://lifecs.likai.org
http://lifecs.likai.org

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	The Memory Allocation Problem
	Memory Related Program Errors
	Ways to Find Memory Errors and Their Limitations
	Linear Logic
	Inspirations of Linear Logic
	Linear Object Ownership Semantics
	Memory Hierarchy
	Advances in Garbage Collection
	Argument Against Parallel Garbage Collection
	Organization of This Dissertation

	Linear Ownership Semantics
	Object as a Smart Pointer
	Linear Pointer
	Linear Base Class
	Linear Pointer and Linear Chromatic Pointer
	Erasure
	Idioms for Manipulating Linear Pointers
	Idioms for Borrowing
	Conclusion

	Using Linear Pointer
	Singly Linked List
	Singly Linked Segment
	Singly Linked List Sorting
	Augmented Linked List
	Binary Search Tree
	Splay Tree
	Conclusion

	Design of the Memory Allocator
	Zones and Zone Map
	Heaps and Pool Management
	Linearity Issues
	Optimization
	Benchmark and Results
	Packed Size Classes
	Lower Best-Fit Size Classes
	Upper Best-Fit Size Classes
	Upper Best-Fit Plus One

	Conclusion

	Linearity and Concurrency
	A Historical Perspective
	Hardware Intrinsics
	Linear Atomic Value
	Linear Slots
	Double-Ended Queue
	Structural Invariants
	The Implementation
	Discussion
	Related Work

	Singly Linked List
	Linear Transactional Pointer
	Towards Theorem Proving
	Conclusion

	Conclusion
	Comparing Memory Management Scalability Using Cilk and JCilk
	Description of Memory Management Methods
	Scalability Metrics
	Results
	Conclusion

	Linear Pointer in C++11
	Bibliography
	Vita

